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The vibrational entropy of a solid at finite temperature is investigated from the perspective of
information theory. Ab initio molecular dynamics (AIMD) simulations generate ensembles of atomic
configurations at finite temperature from which we obtain the N -body distribution of atomic dis-
placements, ρN . We calculate the information-theoretic entropy from the expectation value of
ln ρN . At a first level of approximation, treating individual atomic displacements independently,
our method may be applied using Debye-Waller B-factors, allowing diffraction experiments to obtain
an upper bound on the thermodynamic entropy. At the next level of approximation we correct the
overestimation through inclusion of displacement covariances. We apply this approach to elemental
body-centered cubic sodium and face-centered cubic aluminum, showing good agreement with ex-
perimental values above the Debye temperatures of the metals. Below the Debye temperatures we
extract an effective vibrational density of states from eigenvalues of the covariance matrix, and then
evaluate the entropy quantum mechanically, again yielding good agreement with experiment down
to low temperatures. Our method readily generalizes to complex solids, as we demonstrate for a
high entropy alloy. Further, our method applies in cases where the quasiharmonic approximation
fails, as we demonstrate by calculating the HCP/BCC transition in Ti.

I. INTRODUCTION

The importance of entropy as a component of ther-
modynamic free energy, together with the difficulty of
its calculation, motivates continuing efforts seeking im-
proved computational approaches [1–6]. The entropy is
a function of the state of the system, and is in principle
determined by the instantaneous values of every degree
of freedom. Most computational approaches to entropy
calculation do not make explicit use of these values, and
instead apply some form of thermodynamic integration
to relate the entropy in the state of interest to some refer-
ence point of known entropy [7–9]. Our approach recog-
nizes that the entropy equals, in suitable units, the infor-
mation required to fully specify the state of the system.
We capture this information in the form of many-body
correlation functions obtained from ab initio molecular
dynamics (AIMD).

Multiple types of excitation contribute to the entropy
of a solid. Neglecting correlations among these, we may
approximate the entropy as a sum

S ≈ Sv + Se + Sc + · · · (1)

where Sv arises from atomic vibrations [10], Se in-
cludes electronic excitations, the non-vibrational config-
urational term Sc incorporates vacancies and chemical
species substitutions [11]. The additional terms may in-
clude magnetism and other effects [12]. The present pa-
per primarily addresses the vibrational contribution, but
for comparison with experiment we must include the elec-
tronic entropy. While our initial approach is classical,
and intended for applicability at elevated temperatures
close to melting, we show how quantum effects can be
incorporated to obtain accurate results below the Debye
temperature. Additionally, the electronic entropy is in-
trinsically a quantum mechanical property.

The following section presents our computational

methods. The heart of our approach rests on approx-
imating the many-body displacement correlation func-
tion as a Gaussian distribution matching the simulated
covariance of atomic displacements. We then apply the
method to two test cases, face-centered cubic Al and
body-centered cubic Na. In each case we compare with
standard thermodynamic data. We also show the appli-
cability of a simple approximation based on experimen-
tal Debye-Waller factors (thermal B-factors) that allow
experimental diffraction measurements to obtain approx-
imate thermodynamic entropies.

Our principal results for these test cases are illustrated
in Fig. 1 parts (a) and (b). Notice first that the Debye-
Waller factors yield good qualitative results, lying within
1kB of the experimental values, but remaining consis-
tently high. This is because the Debye-Waller factors
treat the individual atomic vibrations independently, and
neglect the mutual information contained in displace-
ment correlation functions that must reduce the vibra-
tional entropy [1, 6, 13–15]. Including the covariances
of displacements and electronic entropies (curves labeled
classical) improves the agreement, but with negative de-
viations at low temperatures due to the log T divergence
of the classical vibrational entropy.

To overcome the deficiency of classical statistical me-
chanics at low temperatures, we introduce a quantum
version of our method where we interpret eigenvalues of
the covariance matrix as effective vibrational frequencies
renormalized by anharmonic forces. This reveals a rela-
tionship between our method and a different approach
based on velocity autocorrelation functions [20–22], al-
though the two approaches differ in important respects.
Residuals of several versions of our calculated entropies
relative to experiment are plotted in Fig. 1 (c) and (d),
and are further discussed in Section III A.

We then apply our method to two examples that
are scientifically interesting and technically challenging.
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FIG. 1. Entropies of (a) Al, and (b) Na. Black circles show experimental values from the NIST JANAF Tables [16, 17]. Orange
triangles are calculated from Eq. (16) using B-factors obtained from [18, 19]. Red squares add the classical vibrational entropy
calculated from Eq. (10) to the electronic entropy calculated from Eq. (15). Parts (c) and (d) show residuals after subtracting the
experimental values. In addition, we show our vibrational quantum model calculated from Eq. (14) using effective vibrational
frequencies calculated by Eq. (13), and the quasiharmonic prediction with vibrational frequencies calculated by Phonopy. All
calculations are performed at the experimentally determined volumes for each temperature. All curves, except for Debye-Waller
and single-site, include electronic entropy.

First we examine the high entropy alloy MoNbTaW [23,
24]. Here the chemically disordered structure makes
the conventional phonon-based approach time consum-
ing. Unfortunately it also increases the demands on
AIMD run times and limits our ability to improve statis-
tics through symmetrization. Next, we address the
temperature-driven HCP to BCC transition of Ti. Owing
to the presence of imaginary frequency modes in the BCC
state, the usual harmonic and quasiharmonic approaches
cannot be applied, while our method succeeds.

II. METHODS

A. Probability density function

Our approach focuses on the N -body probability den-
sity function ρN (U ,P) of a classical N -atom system
in Cartesian phase space. The displacement variable
U = (u1,u2, ...,uN ), where ui ≡ ri −Ri defines atomic
displacement of the position ri of atom i from its mean
position (ideal lattice site) Ri, and P = (p1,p2, ...,pN )
incorporates the momenta {pi}. Owing to the additivity
of kinetic and potential energy, the phase space proba-
bility factors into a product of density functions fu(U)
and fp(P)

ρN (U ,P) = h3Nfu(U)fp(P). (2)
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The factor h3N comes from the constraint that the prob-
ability density integrates to 1,

1

h3N

∫∫
· · ·
∫ ∞
−∞

ρN (U ,P)d3N U d3NP = 1. (3)

The entropy according to Gibbs [25] is

S = − 1

h3N

∫∫
· · ·
∫ ∞
−∞

ρN (U ,P) ln ρN (U ,P) d3NU d3NP .

(4)
This is identical to the Shannon [26] information-
theoretic entropy, in suitable units.

According to classical Maxwell-Boltzmann statistics,
the momentum distribution function is Gaussian,

fP(P) =
exp(− 1

2P
TΣ−1

p P)√
(2π)3N det(Σp)

, (5)

with Σp a diagonal matrix of entriesmi/β wheremi is the
mass of atom i and β = 1/kBT . Formally, we set M =
diag (m1,m1,m1,m2 · · · ,mN ), so that Σp = M/β.

In contrast to the simplicity of the momentum distri-
bution, the density function fu(U) is difficult to describe
precisely, considering the many-body and anharmonic in-
teractions among atoms. We choose to approximate it as
a Gaussian with suitable covariance. Hence we write

f(U) =
exp(− 1

2U
TΣ−1

u U)√
(2π)3N det(Σu)

, (6)

where Σu is the covariance matrix

Σu =


σ1,1 σ1,2 · · · σ1,N

σ2,1 σ2,2 · · · σ2,N

...
...

. . .
...

σN,1 σN,2 · · · σ,NN

 . (7)

The σi,j element of Σu is the 3× 3 covariance matrix of
the displacements ui and uj of the ith and jth atoms,

σi,j =

 〈xixj〉 〈xiyj〉 〈xizj〉〈yixj〉 〈yiyj〉 〈yizj〉
〈zixj〉 〈ziyj〉 〈zizj〉

 , (8)

with x, y, and z the Cartesian coordinates of the displace-
ment u. Diagonal elements of the covariance matrix yield
the variances, e.g. for our cubic lattices σi,i = 〈x2〉1.
Due to the Gaussian approximation, the many-body den-
sity fu(U) factors into a product of two-body correla-
tions. Note that these two-body terms include anhar-
monic effects through the values of their covariances.

Within these approximations, the entropy S of N
atoms becomes

S =
1

2
ln(det (Σu)) +

3

2

N∑
i=1

ln(mi/β~2) + 3N. (9)

If all masses are equal, S simplifies to

S =
1

2
ln
(
(2πeΛ)3N det (Σu)

)
(10)

where Λ =
√

2π~2/mkBT is the thermal de Broglie wave-
length for mass m at temperature T . Subject to the
Gaussian approximation, our method resembles the ap-
proach of Morris and Ho [1], who applied it to a one-
dimensional model system. However, the formalism of
Eq. (4) applies generally, and we will examine corrections
to the Gaussian approximation in Section III C 2.

Fig. 2 illustrates the covariance matrix Σu for FCC Al
at T=900K. Repeating patterns reflect the symmetries
of the FCC structure. Translational symmetry requires
that the covariance submatrix σi,j depends only on the
relative position Ri,j = Rj −Ri = ha + kb + lc, of the
ith and jth atoms. Consequently, covariance matrices
σi,j sharing the same Miller indices hkl share the same
value, σhkl. All 3 × 3 matrices along the diagonal are
equivalent and share the form σ000 shown in part (d),
whose off diagonal elements vanish due to mirror sym-
metries. Three-fold rotational symmetry can be seen in
the covariance matrices σ011, σ101, σ110 (parts (e)-(g))
whose non-zero off-diagonal elements are yz, xz, and xy
components.

B. Relation to force constant matrix

The probability density ρ(x) of a classical oscillator in
the harmonic potential U = 1

2mω
2x2 is

ρ(x) =

√
βmω2

2π
e−

1
2βmω

2x2

, (11)

and the variance of its displacement is σ2 =
〈
x2
〉

=

1/(βmω2). The force constant C = U ′′ = mω2 is re-
lated to the variance by C = 1/βσ2. For an N -particle
system, the force constant matrix C is defined in term of
the second derivative of the potential U ,

Ciµ,jν =
∂2U

∂uiµ∂ujν
. (12)

where uiµ, ujν are elements of displacement U in which
i, j denote atoms and µ, ν denote x, y, z Cartesian coor-
dinates. The mass-weighted covariance matrix, Σ̃iµ,jν =√
mimj Σiµ,jν , relates to the mass-reduced force constant

matrix C̃iµ,jν = Ciµ,jν/
√
mimj , by

C̃ =
1

β
Σ̃−1, (13)

hence measurement of the covariance matrix yields the
complete set of force constants. The matrices C̃ and Σ̃
are singular because of center of mass translation invari-
ance. To invert the singular matrix, we represent Σ̃ =∑
kµ λkµ|kµ〉〈kµ| where {(λkµ ≡ βω2

kµ)−1, |kµ〉} is the set
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FIG. 2. (a) Complete AIMD simulated covariance matrix of FCC Al at 900K in a 4×4×4 supercell of 256 atoms. (b) Submatrix
of a 4-atom tetrahedron. (c) Unit cell of FCC Al illustrating tetrahedron of four nearest neighbors. (d)-(g) Single site variance
matrix σ000 and three nearest-neighbor covariance matrices σ011, σ101 and σ110. Red color indicates positive covariance while
blue color indicates negative covariance, scaled to the values of 〈x2〉 = xyz. Color bar indicates sgn(σ) ln (|σ/σmin|).

of eigenvalues and eigenvectors of Σ̃. Then, noting that
C̃ and Σ̃ share common eigenvectors, we invert the non-
vanishing eigenvalues to obtain C̃ =

∑
kµ ω

2
kµ|kµ〉〈kµ|.

For a harmonic potential U , the relationship Eq. (13) is
exact; for an anharmonic system we may take Eq. (13) as
defining temperature-dependent effective force constants.

C. Quantum harmonic entropy

The entropies predicted by our classical theory agree
quite well with the experimental values at high temper-
atures, but they fall below experiment at temperatures
below the Debye temperatures ΘD, as seen in Fig. 1. The
negative deviation is a consequence of the negative diver-
gence of log (u2/Λ2) ∼ 2 log T as T → 0. Experimentally
S → 0 for all materials, by the third law of thermody-
namics, because quantum mechanics inhibits the excita-
tion of vibrational modes with frequencies greater than
kBT/~.

To overcome the singularity of classical entropy, we
adopt entropy of the quantum harmonic oscillator, us-
ing harmonic frequencies ωkµ obtained from eigenvalues
of our covariance matrix as discussed in Sec. II B. Sum-
ming over the nonzero vibrational frequencies, the en-
tropy with quantum corrections is

S = kB
∑
kµ

[
− ln(1− e−β~ωkµ) +

β~ωkµ
eβ~ωkµ − 1

]
. (14)

This yields better agreement when temperature is below

the Debye temperature as shown in Fig. 1. In particular,
the limit S → 0 as T → 0 is obeyed.

This quantum model is harmonic in the sense that
it is exact for quadratic potentials U , but it incor-
porates anharmonicity through the effective vibrational
frequencies which were derived from the simulated co-
variance matrix. Errors due to applying the quantum
harmonic model should be small at low temperatures,
where motion generically becomes harmonic. Some prior
studies employ time-dependent velocity correlation func-
tions, then Fourier transform over time to obtain fre-
quencies [20–22]. The systematics of that approach dif-
fer markedly from ours, as in principle we do not require
time evolution at all; we only simulate trajectories for
the sake of enlarging our configurational ensemble.

The model Hamiltonian can be constructed in the ac-
tual harmonic limit of small oscillations by evaluating
the force constants within density functional perturba-
tion theory. This mode substantially underestimates the
high temperature entropy as it neglects thermal expan-
sion. The quasiharmonic approximation can be used to
predict thermal expansion, resulting in improved agree-
ment, or better yet we can evaluate the force constants
at the experimental lattice parameters. As seen in Fig. 1
the quasiharmonic approximation utilizing experimental
lattice constants agree with experiment about as well as
our new method.
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D. Ab-initio methods

Ab initio molecular dynamics (AIMD) simulations are
performed for FCC Al in supercells of size 4 × 4 × 4
(256 atoms) and 6 × 6 × 6 (864 atoms), and for BCC
Na in a 6 × 6 × 6 supercell (432 atoms). We use
the Vienna Ab initio Simulation Package (VASP [27])
using augmented plane wave potentials [28] with the
Perdew-Burke-Ernzerhof (PBE [29]) generalized gradi-
ent exchange correlation functional. We use a single
electronic k-point and default plane wave energy cutoffs.
When possible we use experimental lattice constants at
the appropriate temperatures. The molecular dynamics
simulations use Nosé thermostats with the default Nosé
mass parameters. Our time steps are 2fs, and our runs
extend to 40ps for Al (4× 4× 4) and 8ps for (6× 6× 6),
and 7ps or greater for Na.

After allowing the simulated systems to approach equi-
librium, the variances and covariances are calculated
from a continuing simulation by averaging uiuj over
many samples. We also average over Ω reflection, rota-
tion and translation symmetry operations Tk such that
σi,j = 1

Ω

∑
k Tkuiuj becomes symmetry invariant. In

principle all the information needed to evaluate the en-
tropy is contained in just a single representative structure
of sufficient size, but the time averaging helps to reduce
statistical error.

We perform phonon calculations as implemented in
phonopy [30] to obtain force constants and vibrational
frequencies, and then calculate vibrational entropy as dis-
cussed in Section II C. Rather than calculating the ther-
mal expansion ab-initio, as in the traditional quasihar-
monic approximation [31], we simply evaluate the force
constants at the experimentally known temperature-
dependent lattice constant a(T ).

Electronic entropy is evaluated as

S =− kB
∫

dED(E)[fT,µ(E) ln fT,µ(E)

+ (1− fT,µ(E)) ln (1− fT,µ(E))] (15)

with D(E) the electronic density of states calculated
from a structure with lattice constant a(T ), and fT,µ the
Fermi-Dirac occupation function. The chemical poten-
tial µ is obtained as a function of T using the program
Felect [32].

III. APPLICATIONS

A. Test cases: FCC Al and BCC Na

Our method successfully predicts vibrational entropy
for Al and Na, as shown in Fig. 1 parts (a) and (b). Fig. 1
parts (c) and (d) compare the residual errors of various
approximations by subtracting off the experimental en-
tropies. Curves labeled “Debye-Waller” and “single-site”
neglect correlations among the displacements of different

atoms. In this case the entropy reduces to

S =
3

2
ln
[
2πe(σx/Λ)2

]
(16)

where σ2
x = 〈u2

x〉 is the mean square displacement. This
quantity is related to the Debye-Waller factor [33] that di-
minishes the diffraction intensity of a peak or wavevector
q by the factor exp (−q2〈u2〉/3). The displacements are
sometimes given in terms of B = 8π2〈u2〉/3. In Fig. 1 we
compare the experimental entropies of Al and Na with
the prediction of Eq. (16) using experimental values of
the B-factor. Given the seeming disparity between crys-
tallographic and thermodynamic methods, the agreement
is quite striking.

Note that the Debye-Waller and single-site entropies
exceed the experimental values. The displacement of a
single atom applies forces that displace nearby atoms, re-
ducing the total amount of information needed to specify
a given configuration U . A similar effect is found in the
entropy of liquids, where the information content of pair
correlation functions reduces the entropy below the value
for an ideal gas at the same overall density [13–15]. The
improvement upon including the full covariance matrix is
evident in the curve labeled “classical”, but as discussed
previously it suffers an unavoidable lnT negative diver-
gence. This divergence is aleviated at low temperatures
through quantum model (Sec. II C). The quasiharmonc
model is also quite accurate.

To better understand how the covariance matrix and
entropy are influenced by the range of correlations, and
by our finite MD simulation cells, we study the conver-
gence of covariance matrix elements and corresponding
entropy of Al, including only matrix elements σhkl of
pairs separated by Rhkl = |ha + kb + lc|. Fig. 3 (a)
and (b) show that the absolute value of det (σhkl) drops
rapidly with increasing the bond length, suggesting our
simulation cell size is sufficient to capture the dominant
collective motions of the solid, although some indication
of cell size dependence can be seen in the excess corre-
lation around [hkl] = 004 at T = 300K. Similar decay
of correlations was observed in other simulations [6, 34].
Comparing T = 900K with T = 300K, we see similar
variation with Rhkl, while the values at high tempera-
ture are nearly two orders of magnitude larger. Compar-
ing convergence of the 4× 4× 4 (256 atom) cell with the
6 × 6 × 6 (864 atom) cell in Fig. 3 (c) and (d) suggests
the 4 × 4 × 4 is fully adequate for entropy calculation
at high temperatures, but just barely sufficient at low
temperature.

B. High entropy alloy: vibrational entropies of
MoNbTaW

Although high entropy alloys (HEAs) acquire their
name from the entropy of chemical substitution, their
vibrational entropy may exceed their substitutional en-
tropy by a considerable margin. Substitutional entropy
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FIG. 3. Left: Comparison of covariance matrix elements σhkl as bond length increases for Al at (a) T = 300K and (b)
T = 900K. Right: Convergence of entropy S after including all covariance matrix elements σhkl of pairs within R < Rhkl at
(c) T=300K and (d) T = 900K.

is relevant for stability mainly because the vibrational
entropy of the mixture lies close to the average vibra-
tional entropy of the elements [35]. Here, we investigate
the applicability of our covariance method to calculate
the vibrational entropy of MoNbTaW [23]. Since chemi-
cal substitution is prevalent in HEAs, we have to choose
what specific arrangement of atoms to take. We will take
as representative structures the final configurations from
hybrid MC/MD simulations [24], which reflect the tem-
perature variation of chemical order.

We calculate the vibrational entropy Svcm of a spe-
cific chemical configuration at each temperature using
the covariance matrix Σu obtained from from MD sim-
ulations. Fig. 4 (a) plots entropies Svcm + Se of theses
structures. We compare our prediction with the average
experimental entropies of pure elements, Savg, and with
the quasiharmonic vibrational entropies Svqha + Se of a

cF16 (Heusler) MoNbTaW structure at the same lattice
parameters as our MD simulations. These temperature-
dependent lattice parameters were determined by varying
the volume until the simulated total pressures vanish on
average. It is seen from Fig. 4 (a) that both quasihar-
monic and covariance matrix entropies are close to, but
slightly smaller than, the averaged entropy Savg of pure
elements, consistent with prior calculations [40].

The vibrational entropy derived from the covariance
matrix converges slowly because these chemically disor-
dered structures lack symmetry and we cannot employ
symmetry averaging as discussed in Section II D. As a
result, the covariance matrix has poor statistics and is
hard to converge as illustrated in Fig. 4 (b). Unfortu-
nately we lack an extrapolation formula for entropy vs.
simulation time. At long times these entropies converge
towards entropies calculated from the quasiharmonic ap-
proximation Sqha.

In an effort to alleviate the poor statistics, we intro-
duce a “pair averaged covariance matrix”, Σ̄u, that main-

tains the chemical identities at each site while averaging
of their chemical environments. The (i, j) element of the

full covariance matrix Σu is the 3× 3 matrix σαβi,j , where
the superscripts remind us that the chemical species at
site i is c(i) = α and the chemical species at site j is

c(j) = β. Let the Pαβi,j be the set of all pairs (i′, j′) such

that Ri′,j′ = Ri,j and c(i′) = α and c(j′) = β. We define
the (i, j) element of Σ̄u as

Σ̄u(i, j) = σ̄αβi,j =
1

Nαβ
i,j

∑
i′,j′

σαβi′,j′ (17)

where the sum runs over the set Pαβi,j containing Nαβ
i,j

elements. The entropy computed from Σ̄u is expected to
provide a close upper bound on Svcm.

C. BCC to HCP phase transition in titanium

Certain elements and compounds are so strongly an-
harmonic that the entropy simply cannot be calculated
within the harmonic or quasiharmonic approximation.
Elements in columns 3 and 4 of the Periodic Table un-
dergo diffusionless (Martensitic) phase transformations
from BCC (β-phase) stable at high temperature to HCP
(α-phase) stable at low temperature. Harmonic analysis
predicts their BCC states to be mechanically unstable
at low temperature because they exhibit imaginary vi-
brational frequency modes. Eigenvectors of these modes
describe the transformation pathway [41, 42]. The insta-
bility prevents application of conventional harmonic or
quasiharmonic calculations of the entropy. Our calcula-
tion method circumvents this difficulty because it does
not require the calculation of vibrational frequencies.

These structural phase transitions are of practical
importance, motivating considerable efforts to predict
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transition temperatures and understand their mecha-
nisms [43–48]. Proposed methods include phase space
partitioning [43–45], effective force constant averag-
ing [48], and an “augmented lattice” model [44]. Pre-
dicted transition temperatures range from 1095K to
1114K, in general agreement with in agreement with the
experimental transition temperature Tc = 1166K [49].
We apply our covariance matrix method to calculate vi-
brational entropy and predict transition the temperature
Tc = 1060K.

We perform AIMD simulations for both BCC and
HCP Ti at lattice constants that are fitted to experi-
mental measurements with quadratic functions as shown
in Fig. 5. Considering the scattering of experimen-
tal measurements of lattice constants, we choose to fit
Ref. [50, 53] for lattice parameters of BCC Ti and
Ref.[50, 55, 56] for HCP Ti. To minimize size effect, we
prepare simulation cells with the same atomic number—
an orthorhombic 256-atom 4x4x4 supercell based on a
4-atom unit cell (a = a, 0, 0; b = 0, a,−a; c = 0, a, a) for
BCC Ti, and an orthorhombic 256-atom 4x4x4 supercell
based on a 4-atom unit cell (a = a, 0, 0; b = 0,

√
3a, 0; c =

0, 0, c) for HCP Ti.

A comparison of calculated total entropy Svcm+Se and
experimental entropy is illustrated in Fig. 6 (a). Elec-
tronic entropies Se are calculated from Eq. 15 with elec-
tronic density states obtained at the given volume for
each temperature. As shown in Fig. 7, BCC Ti has a sub-
stantially higher electronic entropy than HCP Ti due to
the pseudogap at the Fermi energy of the HCP density of
electronic states. Formation of the pseudogap drives the
Burger’s distortion from BCC to HCP [42]. Entropy of
HCP Ti from our work compares well to the experimen-
tal entropy except one value at T = 1400K which falls
in the region where HCP is thermodynamically unstable.
The entropy of BCC Ti, however, is overestimated by an

amount of 0.5kB to 1.0kB at all temperatures.
Enthalpies are obtained by averaging energies over our

MD simulations. To place enthalpies on the experimental
scale, we shifted all of our calculated enthalpy values so
that our enthalpy of α matched the experimental value at
T = 800K. For both phases our simulation matches well
with measurement at temperatures below the α → β
temperature while at higher temperatures it falls be-
low the experimental enthalpy. Finally, we compute the
Gibbs free energy G = H − TS based on our calculated
entropy and enthalpy of HCP Ti at T=800K, 1000K,
1200K and BCC Ti at T=1200K, 1400K, 1600K and pre-
dict α-β phase transition temperature T pred

c = 1060K
(see Fig. 6).

To understand the overestimate of BCC entropy, which
leads to a low estimate of Tc, we compare calculated
phonon spectra and vibrational density of states derived
from our force constant matrix (see Fig. 8) with results
from Ref. [54]. Note that our effective vibrational fre-
quencies fall systematically below the experiment, ex-
plaining the overestimate of entropy. We tested to see if
this could be due to errors in lattice constant, but the im-
pact of volume changes was not sufficient to explain our
disagreement. Presumably the fault lies in some aspect
of our simulation method. Below we investigate possi-
ble explanations in finite size effects, or anharmonicity,
but these also turn out to be too small to explain the
discrepancy.

1. Finite site effect

To evaluate the impact of simulated cell size on the
entropy of BCC Ti, we perform entropy calculation for
three sizes: 54-atoms, 128-atoms, and 250-atoms. Fig. 9
shows a linear relation between entropy Svcm and inverse
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size 1/N . With larger cells, entropy increases, and so
does the disagreement with experiment. This finite size
effect for BCC Ti resembles the finite size effect in high-
pressure high-temperature BCC Fe [60], so we believe the
effect is real.

2. Anharmonicity

We investigate the effect of anharmonic corrections to
the single site probability density

ph(u) =
e−

x2+y2+z2

2σ2√
(2πσ2)3

=
e−

R2

2σ2√
(2πσ2)3

. (18)

At the lowest order of anharmonicity, the probability den-
sity pa(u) includes the isotropic term

I(u) = (x2 + y2 + z2)2, (19)

and the anisotropic term

A(u) = x4 + y4 + z4 − 3
(
x2y2 + x2z2 + y2z2

)
, (20)

which are invariant under cubic symmetry operations.
The anharmonic probability density is hence approxi-
mated by

pa(u) =
1

Z
exp

(
− R2

2σ2

)
exp

(
− a

4σ4
I(u)− b

4σ4
A(u)

)
,

(21)

where Z is the normalization factor

Z =

∫
V

du pa(u), (22)

and the integration volume V is the Wigner-Seitz cell of
an atom.

In practice we cut off the integration at the cube V =
[−8σ,+8σ]3, as justified by the rapid vanishing of pa(u).
We calculate averages 〈R2〉, 〈R4〉, and 〈A〉 during our
simulation, then we fit values of σ, a, and b by solving
the simultaneous nonlinear equations

〈R2〉 =

∫
V

du R2 pa(u) (23)

〈R4〉 =

∫
V

du R4 pa(u) (24)

〈A〉 =

∫
V

du A(u) pa(u) (25)

where the probability pa(u) is given by Eq. (21. Finally,
the positional part of the anisotropic entropy, Sa, is cal-
culated from

Sa = −kB

∫
V

du pa(u) ln pa(u). (26)

Table. I compares the influence of anharmonicity in
FCC Al with BCC Ti, and presents numerical values
of the averages in Eq. (23) and the solutions for σ2, a, b
and entropy S. Anharmonicity tends to reduce the en-
tropy for both FCC Al and BCC Ti, yet the reduction
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is insufficient to explain our entropy excess in BCC Ti.
Differences in the signs of the a and b parameters be-
tween FCC Al and BCC Ti imply opposite deviations
of our harmonic model from the simulated distribution.
In FCC Al, the simulated distribution is more narrow,
with a higher probability at origin than in our harmonic
model; in BCC Ti, the simulated distribution is broader
and lower at the origin. Our anharmonic model captures
these deviations, as shown in the marginal distributions
p(x) in Fig. 10.

To examine the anisotropies, we plot the marginal
distributions pa(x, y) in Fig. 11. In FCC Al, atomic
displacements are reduced in the near-neighbor direc-
tions [110] and correspondingly enhanced in the [100]
directions. In BCC the displacements are reduced in
the nearest-neighbor directions [111] (not shown). Four
such bonds project onto the [100] directions, while only
two project onto [110], explaining the observed pattern.
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〈
R2

〉
[Å]

〈
R4

〉
[Å4] 〈I〉 [Å4] σ2 [Å2] a b Sa − Sh [kB]

FCC Al 0.05933 0.005945 0.00003873 0.01918 -0.005718 -0.001890 -0.00017975
BCC Ti 0.19061 0.06040 -0.002597 0.06433 0.003210 0.01596 -0.001227

TABLE I. Statistical average of 〈R〉,
〈
R2

〉
from MD simulations. Correction to harmonic entropy and parameters σ2, a, b,

and Sa − Sh of FCC Al at T = 500K and BCC Ti at T = 1200K.

-4σ -3σ -2σ -σ 0 σ 2σ 3σ 4σ
x

0

0.5

1

1.5

2

2.5

3

p
(x

)

HIST
HA
ANI

-σ/2 σ/20

(a)

-4σ -3σ -2σ -σ 0 σ 2σ 3σ 4σ
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

p
(x

)

HIST
HA
ANI

σ/2-σ/2 0

(b)

FIG. 10. Marginal probability distributions p(x) of (a) FCC Al at T=500K and (b) BCC Ti at T=1200K. Crosses are
histograms of the simulated data, red lines are fits to the harmonic model ph (Eq. (18)), and blues lines are fits to the
anharmonic model pa (Eq. (21)).

Overall, FCC Al is more isotropic than BCC Ti and hence
has a smaller angular entropy correction.

IV. CONCLUSION

We apply the information-theoretic entropy formula
Eq. (4) to evaluate the vibrational entropies of solids
from the variance and covariance of atomic displace-
ments. This approach generalizes prior work on the
information-based entropy of liquids [13–15]. In the case
of liquids, the single atom entropy (ideal gas term) over-
estimates the entropy and must be corrected by removing
the mutual information of the pair correlation functions.
In the case of solids, the variance of individual atomic
displacements can be measured through diffraction ex-
periments that yield the Debye-Waller B-factor. Thus
we find a crystallographic approach to estimate the ther-
modynamic entropy. However, as in the case of liquids,
the one-body approximation overestimates the entropy
by the information content of correlation functions, and
we can improve the entropy estimate by including the co-
variance of atom pairs. This might be possible to achieve
through diffraction experiments that measure the second-
order thermal diffuse scattering [33]. It is easy to achieve
through AIMD simulations of the atomic displacement
covariance matrix, as we demonstrate in this paper for
elemental Al and Na.

The method applies generally to solids, but the partic-
ular implementation given here relies on the accuracy of
a Gaussian approximation to the distribution function.
Hence it is most likely to work when the atomic displace-

ments are small, and it is likely to fail in molecular solids
where coherent bond rotations are present. Although we
mainly demonstrated the method for elemental solids, it
also holds in principle for complex crystalline and non-
crystalline solids. We give an example of such an appli-
cation for the MoNbTaW high entropy alloy.

The quasiharmonic method may be equally accurate
and more efficient than our AIMD method when anhar-
monicity mainly enters through thermal expansion, but
a simulation-based approach in principle includes addi-
tional anharmonic contributions. Doing so may require
correlations beyond those captured by the Gaussian ap-
proximation (see Sec. III C 2). Our simulation-based ap-
proach seems most useful when the simulation has al-
ready been completed for other purposes. Then the en-
tropy comes essentially for free on top of whatever other
information was sought.

In some cases the quasiharmonic method cannot be
applied due to the presence of imaginary frequency vi-
brational modes. The high temperature BCC phases of
columns 3 and 4 of the periodic table exhibit such modes;
they achieve mechanical stability only through their en-
tropies. For elemental Ti, our AIMD method is capa-
ble of estimating the vibrational entropy, although the
modes seem slightly softer than observed in experiment.
We also point out the unexpected strong contribution to
stability from the electronic entropy.

Our simulation approach based on the probability dis-
tribution is more flexible than the velocity-velocity corre-
lation method because it does not rely on an underlying
harmonic model, at least in the high temperature limit.
Further, because it does not depend upon the dynamics,



11

-4σ -2σ 0 2σ 4σ

x
-4σ

-2σ

0

2σ

4σ

y

-0.02

0.02

p
a
-p
h

-4σ -2σ 0 2σ 4σ

x
-4σ

-2σ

0

2σ

4σ

y

-0.02

0.02

p
a
-p
h

FIG. 11. Difference of harmonic and anharmonic marginal probability distributions, pa(x, y)− ph(x, y) for FCC Al (Left) and
BCC Ti (Right).

it can be used in conjunction with Monte Carlo simula-
tion in addition to molecular dynamics. It requires only
a single representative configuration provided the cell is
sufficiently large, rather than demanding a long continu-
ous trajectory.
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