Particles and holes

1. The occupancy fluctuation for a quantum state is defined as

\[\sigma_n^2 = \langle n^2 \rangle - \langle n \rangle^2. \]

For fermions this can be simply expressed in terms of the average occupation probability \(\langle n \rangle \) and the average vacancy probability \(\langle h \rangle = 1 - \langle n \rangle \) (here \(h \) stands for occupation by a “hole”). What is the expression? **Hint:** What can you say about the value of \(n^2 \) for a fermion?

Answer: Since \(n = 0, 1 \) for fermions, we have \(n^2 = n \) and \(\langle n^2 \rangle = \langle n \rangle \). Hence

\[\sigma_n^2 = \langle n \rangle (1 - \langle n \rangle) = \langle n \rangle \langle h \rangle. \]

2. Sketch \(\sigma_n^2 \) as a function of \(\langle n \rangle \) over the full range of \(\langle n \rangle \). Justify the shape and special values of this function on physical grounds.

Answer: The function vanishes at \(\langle n \rangle = 0, 1 \) because the values of \(n \) are pinned to their limits. It is symmetric between particles and holes, hence it is maximal at \(\langle n \rangle = 1/2 \). The value at \(\langle n \rangle = 1/2 \) is \((1/2)^2 = 1/4 \) because the allowed values \(n = 0, 1 \) differ from \(\langle n \rangle \) by 1/2.

![Graph of \(\sigma_n^2 \) as a function of \(\langle n \rangle \)]
3. In a gas of fermions with chemical potential \(\mu \), consider a state of energy \(E \). The probability to occupy this state is

\[
\langle n \rangle = \frac{1}{e^{\beta(E-\mu)} + 1}.
\]

Rewrite the vacancy probability \(1 - \langle n \rangle \) as the probability \(\langle h \rangle \) to occupy a hole state, and relate the energy \(E_h \) and chemical potential \(\mu_h \) of the hole to the corresponding properties of the particle. Is the hole a fermion, or a boson?

Answer: Recall the identity

\[
\frac{1}{x + 1} + \frac{1}{1/x + 1} = 1
\]

which implies that

\[
\langle h \rangle = 1 - \langle n \rangle = \frac{1}{e^{-\beta(E-\mu)} + 1} = \frac{1}{e^{\beta(E_h-\mu_h)} + 1}
\]

with \(E_h = -E \) and \(\mu_h = -\mu \). The hole is a fermion because it obeys Fermi statistics.

4. Compute Deserno’s “fillability” \(\chi \equiv \partial\langle n \rangle / \partial \mu \). Do you see a connection between this result and your expression for \(\sigma_n^2 \) found in part 1? The relationship is a simple example of a general connection between fluctuations and susceptibilities.

Answer: First note that

\[
1 - \langle n \rangle = \frac{e^{\beta(E-\mu)}}{e^{\beta(E-\mu)} + 1}.
\]

Now, taking the requested derivative, we find

\[
\chi = \beta \frac{e^{\beta(E-\mu)}}{(e^{\beta(E-\mu)} + 1)^2} = \beta \langle n \rangle \langle h \rangle = \beta \sigma_n^2
\]

5. Does a similar relation hold for bosons? **Hint:** Recall that \(\sigma_n^2 = \langle n \rangle (1 + \langle n \rangle) \) for bosons.

Answer: Yes, something rather similar happens. We know that

\[
\langle n \rangle = 1/(\exp(\beta (E - \mu)) - 1)
\]

for bosons. Taking the derivative

\[
\frac{\partial \langle n \rangle}{\partial \mu} = \beta \frac{e^{\beta(E-\mu)}}{(e^{\beta(E-\mu)} - 1)^2},
\]

and noting the identity

\[
\frac{1}{x - 1} + \frac{1}{1/x - 1} = -1.
\]

results in

\[
\chi = \beta \langle n \rangle (1 + \langle n \rangle) = \beta \sigma_n^2
\]
as expected.