Thermal Physics 2 (33-342)

Fermi-Dirac Quantum Gas Problem 1:
i and ny and n; for a small number of particles

SOLUTION

Using the programs that you've written for quantum gases, carry out the following
calculations for Fermi-Dirac statistics.

1. For the extreme cases of N = 1,2,3, and 4, compute the chemical potential
i and the occupations of the two lowest energy states as functions of the
temperature.

Don’t include temperatures below 7" = 0.1 in your computations. There are
numerical difficulties at very low temperatures that are not worth worrying
about for this assignment.

Go up to about T'=3.0for N=1,T =5.0 for N =2 and 3, and T = 7.0 for
N=4.

SOLUTION:
See the plots at the end of this document.

2. Are the Fermi energies you found in your computations consistent with what
you had expected? Explain.
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Comparison with the solutibns to Problem 28.1 show that they are in agreement
with the Fermi energies are found from these simulations.

For N = 1, the Fermi energy is halfway between ¢ = 34 and € = 6A.

For N = 2 and N = 3, the Fermi energy is e = 6A.

For N = 4, the ground state and the three-fold degenerate first excited state are
full. The Fermi energy is halfway between e = 64 and € = 9A4. [12+22+2% = 9

3. Explain the occupation number you found in your computations at low tem-
peratures for a state with energy e = 64 for N =2 and N = 3.
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The plots and tables show that the occupations number is about 1/3 for N = 2
at low temperatures. This is consistent with one fermion being in energy level
€ = 6A since this energy level is three-fold degenerate.

For N = 3, the occupation number at low temperatures was 2/3, which is
consistent with two or the three states being occupied.
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Plots for question 1:
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Figure 1: Plots of p, ng, and ny for Fermi-Dirac statistics with for N = 1 in a three-
dimensional box. ng is the occupation of the ground state with energy 34, and n,

is the occupation of the one of the three higher-energy states with energy 64, The
Fermi energy is ey = 4.5.
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Figure 2: Plots of u, ng, and n; for Fermi-Dirac statistics with for N = 2 in a three-
dimensional box. ng is the occupation of the ground state with energy 34, and n,
is the occupation of the one of the three higher-energy states with energy 64, The

Fermi energy is ex = 6.0. /o.: £ -4t ,l_(‘l_’_'_i) = € 4T A~
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Figure 3: Plots of p, ng, and ny for Fermi-Dirac statistics with for N = 3 in a three-
dimensional box. ng is the occupation of the ground state with energy 34, and n,
is the occupation of the one of the three higher-energy states with energy 6A, The
Fermi energy is e = 6.0.
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Figure 4: Plots of u, ng, and n; for Fermi-Dirac statistics with for N = 4 in a three-
dimensional box. ng is the occupation of the ground state with energy 3A, and n,

is the occupation of the one of the three higher-energy states with enquy 6A, The
Fermi energy is ex = 7.5.



