Thermal Physics 2 (33-342)

Fermi-Dirac Quantum Gas Problem 1: μ and n_0 and n_1 for a small number of particles

SOLUTION

Using the programs that you've written for quantum gases, carry out the following calculations for Fermi-Dirac statistics.

1. For the extreme cases of N=1,2,3, and 4, compute the chemical potential μ and the occupations of the two lowest energy states as functions of the temperature.

Don't include temperatures below T=0.1 in your computations. There are numerical difficulties at very low temperatures that are not worth worrying about for this assignment.

Go up to about T=3.0 for N=1, T=5.0 for N=2 and 3, and T=7.0 for N=4.

SOLUTION:

See the plots at the end of this document.

2. Are the Fermi energies you found in your computations consistent with what you had expected? Explain.

SOLUTION: $N = \sum \pi_i (e^{\beta(E_i - \mu)} + 1)^{-1}$

Comparison with the solutions to Problem 28.1 show that they are in agreement with the Fermi energies are found from these simulations.

For N=1, the Fermi energy is halfway between $\epsilon=3A$ and $\epsilon=6A$.

For N=2 and N=3, the Fermi energy is $\epsilon_F=6A$.

For N=4, the ground state and the three-fold degenerate first excited state are full. The Fermi energy is halfway between $\epsilon=6A$ and $\epsilon=9A$. $[1^2+2^2+2^2=9]$

3. Explain the occupation number you found in your computations at low temperatures for a state with energy $\epsilon = 6A$ for N=2 and N=3.

SOLUTION:

E= 1'+1'+1' S.=1

E= 1'+1'+1'= C S.=?

E= 1'+1'+1'= P S.=?

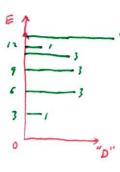
E= 1'+1'+1'= P S.=?

E= 1'+1'+1'= I S.=?

E= 1'+1'+1'= I S.=?

E= 1'+1'+1'= I S.=?

E= 1'+1'+1'= I S.=?



The plots and tables show that the occupations number is about 1/3 for N=2 at low temperatures. This is consistent with one fermion being in energy level $\epsilon=6A$ since this energy level is three-fold degenerate.

For N=3, the occupation number at low temperatures was 2/3, which is consistent with two or the three states being occupied.

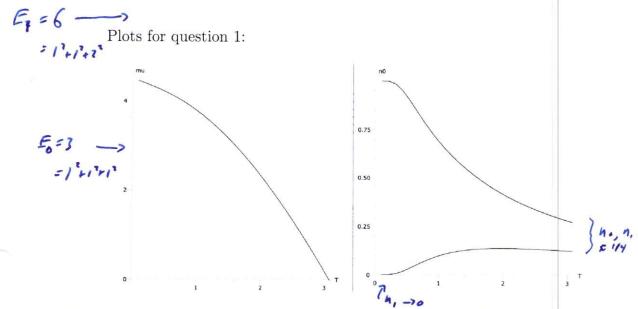


Figure 1: Plots of μ , n_0 , and n_1 for Fermi-Dirac statistics with for N=1 in a three-dimensional box. n_0 is the occupation of the ground state with energy 3A, and n_1 is the occupation of the one of the three higher-energy states with energy 6A, The Fermi energy is $\epsilon_F=4.5$.

128.1 51.:1 51.:3 N=52. M= == = -hoT lu (52./52.) +...

Part E.=3 E.=6 = 9 - 47 lu 3 +...

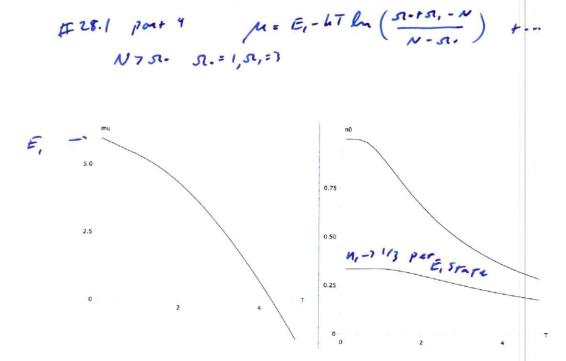


Figure 2: Plots of μ , n_0 , and n_1 for Fermi-Dirac statistics with for N=2 in a three-dimensional box. n_0 is the occupation of the ground state with energy 3A, and n_1 is the occupation of the one of the three higher-energy states with energy 6A, The Fermi energy is $\epsilon_F = 6.0$. $\mu = 6 - 47$ $\mu = 6$

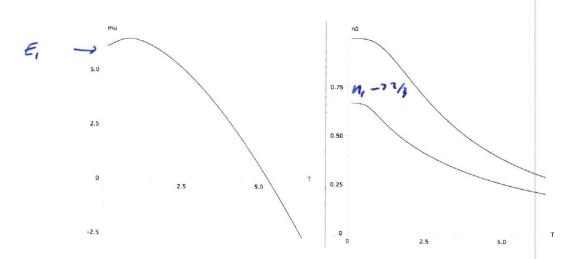


Figure 3: Plots of μ , n_0 , and n_1 for Fermi-Dirac statistics with for N=3 in a three-dimensional box. n_0 is the occupation of the ground state with energy 3A, and n_1 is the occupation of the one of the three higher-energy states with energy 6A, The Fermi energy is $\epsilon_F=6.0$.

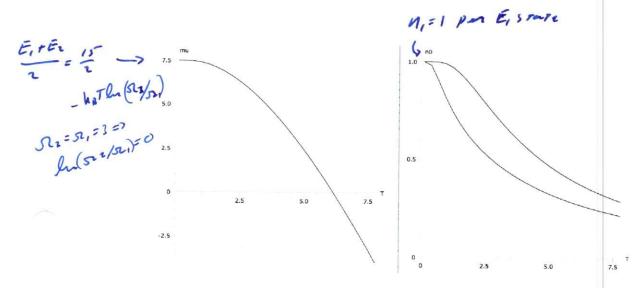


Figure 4: Plots of μ , n_0 , and n_1 for Fermi-Dirac statistics with for N=4 in a three-dimensional box. n_0 is the occupation of the ground state with energy 3A, and n_1 is the occupation of the one of the three higher-energy states with energy 6A, The Fermi energy is $\epsilon_F = 7.5$.