Transfer matrix solution of the 1D Ising model.

Recall the transfer matrix solution of the 1D Ising model presented in

$$
Z=\lambda_{+}^{N}+\lambda_{-}^{N} \quad \text { This version best for }
$$

with small h
being the eigenvalues of the transfer matrix

$$
h=0, \sinh \beta h=0, \cosh \beta h=1
$$

$$
\begin{aligned}
T=\left(\begin{array}{cc}
e^{\beta(J+h)} & e^{-\beta J} \\
e^{-\beta J} & e^{\beta(J-h)}
\end{array}\right) \quad \begin{array}{l}
T
\end{array}=\left(\begin{array}{cc}
e^{\beta h} & e^{-\beta^{h}} \\
e^{-\beta^{h}} & e^{\beta h}
\end{array}\right) \\
\lambda=e^{\beta J}+e^{-\beta J}
\end{aligned}
$$

$$
\lambda_{ \pm}=e^{\beta J} \pm e^{-\beta J}
$$

1. Find simple expressions for λ_{+}and λ_{-}for the case $h=0 .=2 \cosh \beta J, 2 \sinh \beta J$
2. Take the limit of large N and expand the free energy F up to second order in the magnetic field $h . \lambda_{+}>\lambda_{-} \Rightarrow F=-N k T \ln \lambda_{+}=-N k T \ln (2 \cosh \beta J)$
3. Determine the magnetization per spin

$$
-(N / 2 h T) e^{2 J / h T} h^{2}
$$

$$
M=\frac{-1}{N} \frac{\partial F}{\partial h}=\frac{1}{h T} e^{2 \beta J} \cdot h
$$

and the susceptibility per spin

$$
x=\frac{\partial M}{\partial h}=\frac{1}{h T} e^{2 \beta J}
$$

Interpret your result for χ.
$e^{2 \beta J}$ is the enhancement factor $(J>0)$ or diminution ($J<0$) due to coupling with 2 neighbors.

