Thermal Physics 2: Quantum Mechanics Review

States: In quantum mechanics the state of a system encodes all knowledge of its physical

properties. The set of all possible states is a complex vector space known as its Hilbert

space. Figure 1) illustrates the (complex) two-dimensional space for a spin 1/2 particle. We

employ Dirac’s bra(c)ket notation in which the state with spin up along 2 is denoted as a

“ket”-vector represented by the symbol | 1), | + 2), or if the context is clear, simply as |+);

the spin down state is | J), | — 2), or |—). We assume these basis states are normalized to

have length 1. However, a state vector can be multiplied by an arbitrary complex number

a without altering its physical properties. For example a| + 2) still represents the physical

state of spin up along the +2 axis, even for the case a = —1.

One of the strange properties of quantum mechanics
is the possibility to create a superposition state such
as |¢) = a| + 2) + 8] — 2). The complex number «
represents the amplitude of the projection of |¢) onto
| + 2) and 8 the amplitude for | — 2). Geometrically,
the amplitude of a state vector [1)) projected onto a
unit vector |¢) is the dot product of the two vectors,
denoted (¢|¢)). The projection itself lies in the di-
rection of |¢), hence the projection of |¢) onto a |¢)
is ((]¥))|0) = (|o){(@|)|). The useful combination
|¢)(¢| is known as the projector onto |¢). The sym-
bol (+¢| that is used to perform the inner product is
known as a “bra”-vector and is dual to the ket vector

|+¢). The dual to the ket-vector [¢) is the bra-vector
(W] = ar(+2] + 57(=2].

—|+z>

Figure 1: Hilbert space of spin 1/2 par-
ticle. Horizontal and vertical axes rep-
resent the rays {a|+ 2)} and {5] — 2)}
(with o, 8 € C). The unit circle is the
set |a|? + |82 = 1. An arbitrary state
vector 1)) = |+ 2) + 3] — 2). The state
|t)) shown is normalized because it lies
on the unit circle.

States with mutually exclusive properties, such as +Z, are orthogonal. Thus (+2] — 2) =

(—Z2] + 2) = 0. The inner product of a vector with itself is the square of its norm, ||)

|2_

(Ylp) = |a|® + |BJ%. The vector is normalized, i.e. a unit vector, if |[¢)|* = 1.



Operators: Observable properties such as spin, magnetic moment, energy, etc. are repre-
sented in quantum mechanics by operators. For example, in a state |E) of known energy F,
the energy operator (also called the Hamiltonian H) acting on the state returns the state
itself multipled by its energy, H|E) = E|FE). Thus the state of known energy |FE) is an
eigenvector of H with eigenvalue F. If the state is a superposition of states with different

energies, e.g. |¢) = a1|Ey) + as|Es), then H|¢) = oy Ey|Ey) + aoFs|Es).

For a spin-1/2 particle, states with spin up or down along the 2 axis are eigenstates of the
z-component of spin, S,, so that S,| £ 2) = £(h/2)| £ 2). Taking the kets | & ) as a basis,

we can represent the spin operator as a 2 X 2 matrix,

The 3-dimensional spin vector operator can be expressed as S = (h/2)d, where & is a vector

of Pauli matrices with components

Particles cannot simultaneously possess definite values of the spin along different axes because
of the lack of commutation between different Pauli matrices. For example, 0,0, # 0.0,. You
can check that the superposition state |1/) = (| + 2) + | — 2))/+/2 is an eigenstate of S, with
eigenvalue +7/2, but it is not an eigenstate of S,. This seeming contradiction shows that

we cannot specify the & and 2 properties simultaneously; they are incompatible.

We will often consider electrons coupled with magnetic fields via their magnetic moments
m = —gupS/h. Here the — sign enters because of the negative charge on the electron,
g =~ 2 is the g-factor, and pup = eh/2mec is the Bohr magneton. The energy of a magnetic
moment in an applied magnetic field B is —m - B, hence the Hamiltonian for an electron in
a magnetic field B = BZ is

H = upBo,



where the g &~ 2 has canceled against the 1/2 from the electron spin. Note that spin up (m
opposite to B) has high energy +u5B and spin down has low energy —pugB.

Any operator A can be represented as a matrix in an orthonormal basis. Let {|m)} be a

complete basis for the Hilbert space. Then we can express the identity operator as

1= m)m

and we can write
A=TAI =" |m)(m|AY " |n)(n| = [m) Ay (n]

where A,,, = (m|A|n) is the matrix element of A between states |m) and |n). In particular
A can be represented as a diagonal matrix in the basis of normalized eigenvectors {|v;)}
with the corresponding eigenvalues {);} along the diagonal. Alternatively, we may form the

projectors |v;)(v;| and write a projective decomposition of the operator as

A= Z%‘Wﬁ(vﬂ = o) Ai(vl.

J

The eigenvector |v;) represents the state in which the physical property A takes the value
Aj.

Probability: According to the probabilistic rule of Born, the probability that a state |1)
possesses the value A; of a physical observable A is the squared norm of the projection of
|4) onto |v;),

Pr (A =X;) = [{v|)["

Here we assume that both |¢) and |v;) are normalized; otherwise we would need to divide

by their squared norms.

For example, in the normalized state |¢)) = |+ 2) + 3] — 2) the probability that the moment

is up equals |a|?, and the probability the moment is down equals |3]?. Since the moment



must be either up or down, we confirm that (¢]1)) = |a|? + |5|> = 1. Consider a state such
as 1) = (|2) + | — 2))/v/2. This state has 50% probability to be up in the 2 direction, and
50% probability to be down. Curiously, as shown in the previous section, this particular

state has also 100% probability to have its moment in the positive Z direction.

Since we know the probability to have a certain property (e.g. the value of the energy
or the magnetic moment) we can calculate the expectation value of the property. This is
the probability-weighted average of possible values and is also the predicted average if the
property were to be measured repeatedly in multiple instances of the same state. Let {v;}

be the set of possible values and Pr(v;) be their probabilities, then the expectation value
() =D v;Pr(vy).
J

For example, the possible electron magnetic moments along 2 are m, = +up and the average
moment is (m,) = (|8]*> — |a|*)up. Since the energy E = —m,B, the expectation value of

the Hamiltonian is (H) = (|a|* — |8|*)usB = —(m.)B.

In general we can use the projective decomposition of the operator A to evaluate the average

of A in any state |1)). Since the probability of eigenvalue \; is

Pr(A;) = [{v;[)* = (W[vs) (v; 1),

then summing over all eigenvectors results in

(A) =Y (WluAiluilv) = (BlALY).

J

A separate type of probability enters if we lack information about the state of the system.
Say we prepare the system in such a way that it enters state |¢)) with probability P, but it
enters a different orthogonal state |¢) with probability Ps. We refer to the individual states
|1) and |¢) as pure states, and the combination as a mixed state. In a mixed state, the

average value of any observable is the probability-weighted average of the individual pure



state expectation values. In the pure states [¢)) and |¢) the expectation values are (1| A1)
and (¢|A|¢). Hence, in the mixed state, the expectation value (A) = Py (| Al1))+ Pys(¢|Alg).

Density operator: Another way to calculate expectation values, that will generalize nicely
to quantum statistical mechanics, is through the use of a density operator. Given a normal-
ized quantum state [¢), we call the projector p = [1))(¢)| the density operator of the pure

state |¢). If we wish we can represent p as a matrix in some orthonormal basis basis
{m)}. Waite [15) = ¥, cnlm) with e, = (ml) and (] = 3, ¢;(n] with ¢ = (Vi)
so that p = > ¢pchn)(m| has matrix elements p,,, = (m|pjn) = cy,c). Notice that
Tr p =), |cm|® =1, which always holds for density operators, and also p* = p (because p
is a projector) so that Tr p* = 1, which holds only for pure states.

To evaluate the expectation value of an observable, A, consider

(A), = (V] AlY)
= (W[m) Ay (n])

= (nle) (@lm) A
-3 (St

=Tr (pA).

Now, consider a mixed state p = Y, pr|tk) (x|, where 0 < pi < 1 is the probability to be
in the k™ orthogonal pure state |¢). Note that Tr (p) = >, pr = 1, however p? # p and
Tr (p*) =3, pi < 1in a mixed state. As the expectation value of A is given by the average

of pure state expectation values Tr (|1 ) (1| A) weighted by the probabilities py, we have
(A), =Tr (pA),

as before.



Schrodinger equation: The Schrodinger equation

.0
ih ) = H|)

governs the time evolution of the quantum state [¢), where H is the Hamiltonian. If |¢) is
an eigenstate of the Hamiltonian with energy E = hw, then the Schrodinger equation has

the simple solution

() () = e [¥)(0).

If |¢) is not an energy eigenstate, then it can be expanded in a basis of energy eigenstates,

[0) = ealt)ln)

where |n) obey H|n) = E,|n) and c,(t) = ¢, (0)e *Ent/h,

Note that the condition for |1)) to be an energy eigenstate is

H[y) = E[y).

This equation is known as the time independent Schrodinger equation. If the Hamiltonian
H can be expressed as an ordinary matrix (e.g. as for a spin 1/2 system) then it becomes an
ordinary eigenvalue equation. In other cases the Hamiltonian can be a differential operator,
and the time independent Schrodinger equation becomes a differential equation. For example,

for a particle of mass m moving continuously in a potential V' (r), the Hamiltonian is

P2
H=—+V
5, T V(1)
where
h
P — —,V
1
is the momentum operator, and P? = —h?V?2. The quantum state |1)) becomes a wavefunc-

tion ¥ (r) = (rj), with p(r) = [(r)]|* the probability density for the particle at position

r.



Free particle motion occurs when the potential vanishes. In this case the time independent
Schrédinger equation has solutions of the form ¢y (r) = ™ with energy E(k) = h%|k|*/2m,

and the time dependent Schrodinger equation has plane wave solutions
Uie(r, t) = elerme

where w = FE(k)/h. Notice that we have a continuum of possible states, indexed by the

wavevector k, with the dispersion relation w(k).

Sometimes we will apply special boundary conditions (e.g. confinement to a box, or periodic
boundaries), in which case the allowed values of k (and hence E(k)) become quantized. For

a particle confined to a box via the potential

0 O0<z<lL
Vix) =
—+00 else,
the eigenstates are ¢(x) = /2/L sin (k,z). Here k, = nw/L, with n a positive integer, so
that ¢ vanishes at © = 0 and L. With periodic boundary conditions such that ¢(z + L) =
¥(x), the eigenstates are \/1/L e*® with k, = 27/L and n an integer. In both cases the

energies are E,, = h*kZ/2m.

The simple harmonic oscillator, characterized by the potential

1 1
V(z) = §K$2 = imw2x2

is another important example. In this case the wavefunctions take the form of Gaussians

multipled by Hermite polynomials, and the energies are quantized as

E,=(n+1/2)hw.



