Thermal Physics 2: Quantum Mechanics Review

States: In quantum mechanics the state of a system encodes all knowledge of its physical properties. The set of all possible states is a complex vector space known as its Hilbert space. Figure 1) illustrates the (complex) two-dimensional space for a spin $1 / 2$ particle. We employ Dirac's bra(c)ket notation in which the state with spin up along \hat{z} is denoted as a "ket"-vector represented by the symbol $|\uparrow\rangle,|+\hat{z}\rangle$, or if the context is clear, simply as $|+\rangle$; the spin down state is $|\downarrow\rangle,|-\hat{z}\rangle$, or $|-\rangle$. We assume these basis states are normalized to have length 1. However, a state vector can be multiplied by an arbitrary complex number α without altering its physical properties. For example $\alpha|+\hat{z}\rangle$ still represents the physical state of spin up along the $+\hat{z}$ axis, even for the case $\alpha=-1$.

One of the strange properties of quantum mechanics is the possibility to create a superposition state such as $|\psi\rangle=\alpha|+\hat{z}\rangle+\beta|-\hat{z}\rangle$. The complex number α represents the amplitude of the projection of $|\psi\rangle$ onto $|+\hat{z}\rangle$ and β the amplitude for $|-\hat{z}\rangle$. Geometrically, the amplitude of a state vector $|\psi\rangle$ projected onto a unit vector $|\phi\rangle$ is the dot product of the two vectors, denoted $\langle\phi \mid \psi\rangle$. The projection itself lies in the direction of $|\phi\rangle$, hence the projection of $|\psi\rangle$ onto a $|\phi\rangle$ is $(\langle\phi \mid \psi\rangle)|\phi\rangle=(|\phi\rangle\langle\phi|)|\psi\rangle$. The useful combination $|\phi\rangle\langle\phi|$ is known as the projector onto $|\phi\rangle$. The symbol $\langle+\phi|$ that is used to perform the inner product is known as a "bra"-vector and is dual to the ket vector $|+\phi\rangle$. The dual to the ket-vector $|\psi\rangle$ is the bra-vector

Figure 1: Hilbert space of spin $1 / 2$ particle. Horizontal and vertical axes represent the rays $\{\alpha|+\hat{z}\rangle\}$ and $\{\beta|-\hat{z}\rangle\}$ (with $\alpha, \beta \in \mathbb{C}$). The unit circle is the set $|\alpha|^{2}+|\beta|^{2}=1$. An arbitrary state vector $|\psi\rangle=\alpha|+\hat{z}\rangle+\beta|-\hat{z}\rangle$. The state $|\psi\rangle$ shown is normalized because it lies on the unit circle. $\langle\psi|=\alpha^{*}\langle+\hat{z}|+\beta^{*}\langle-\hat{z}|$.

States with mutually exclusive properties, such as $\pm \hat{z}$, are orthogonal. Thus $\langle+\hat{z} \mid-\hat{z}\rangle=$ $\langle-\hat{z} \mid+\hat{z}\rangle=0$. The inner product of a vector with itself is the square of its norm, $\| \psi\rangle\left.\right|^{2}=$ $\langle\psi \mid \psi\rangle=|\alpha|^{2}+|\beta|^{2}$. The vector is normalized, i.e. a unit vector, if $\left.\| \psi\right\rangle\left.\right|^{2}=1$.

Operators: Observable properties such as spin, magnetic moment, energy, etc. are represented in quantum mechanics by operators. For example, in a state $|E\rangle$ of known energy E, the energy operator (also called the Hamiltonian H) acting on the state returns the state itself multipled by its energy, $H|E\rangle=E|E\rangle$. Thus the state of known energy $|E\rangle$ is an eigenvector of H with eigenvalue E. If the state is a superposition of states with different energies, e.g. $|\psi\rangle=\alpha_{1}\left|E_{1}\right\rangle+\alpha_{2}\left|E_{2}\right\rangle$, then $H|\psi\rangle=\alpha_{1} E_{1}\left|E_{1}\right\rangle+\alpha_{2} E_{2}\left|E_{2}\right\rangle$.

For a spin- $1 / 2$ particle, states with spin up or down along the \hat{z} axis are eigenstates of the z-component of spin, S_{z}, so that $S_{z}| \pm \hat{z}\rangle= \pm(\hbar / 2)| \pm \hat{z}\rangle$. Taking the kets $| \pm \hat{z}\rangle$ as a basis, we can represent the spin operator as a 2×2 matrix,

$$
S_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The 3-dimensional spin vector operator can be expressed as $\mathbf{S}=(\hbar / 2) \vec{\sigma}$, where $\vec{\sigma}$ is a vector of Pauli matrices with components

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Particles cannot simultaneously possess definite values of the spin along different axes because of the lack of commutation between different Pauli matrices. For example, $\sigma_{x} \sigma_{z} \neq \sigma_{z} \sigma_{x}$. You can check that the superposition state $|\psi\rangle=(|+\hat{z}\rangle+|-\hat{z}\rangle) / \sqrt{2}$ is an eigenstate of S_{x} with eigenvalue $+\hbar / 2$, but it is not an eigenstate of S_{z}. This seeming contradiction shows that we cannot specify the \hat{x} and \hat{z} properties simultaneously; they are incompatible.

We will often consider electrons coupled with magnetic fields via their magnetic moments $\mathbf{m}=-g \mu_{B} \mathbf{S} / \hbar$. Here the - sign enters because of the negative charge on the electron, $g \approx 2$ is the g-factor, and $\mu_{B}=e \hbar / 2 m c$ is the Bohr magneton. The energy of a magnetic moment in an applied magnetic field \mathbf{B} is $\mathbf{- m} \cdot \mathbf{B}$, hence the Hamiltonian for an electron in a magnetic field $\mathbf{B}=B \hat{z}$ is

$$
H=\mu_{B} B \sigma_{z}
$$

where the $g \approx 2$ has canceled against the $1 / 2$ from the electron spin. Note that spin up (\mathbf{m} opposite to \mathbf{B}) has high energy $+\mu_{B} B$ and spin down has low energy $-\mu_{B} B$.

Any operator \mathcal{A} can be represented as a matrix in an orthonormal basis. Let $\{|m\rangle\}$ be a complete basis for the Hilbert space. Then we can express the identity operator as

$$
I=\sum_{m}|m\rangle\langle m|
$$

and we can write

$$
\mathcal{A}=I \mathcal{A} I=\sum_{m}|m\rangle\langle m| \mathcal{A} \sum_{n}|n\rangle\langle n|=\sum_{m n}|m\rangle A_{m n}\langle n|
$$

where $A_{m n}=\langle m| \mathcal{A}|n\rangle$ is the matrix element of \mathcal{A} between states $|m\rangle$ and $|n\rangle$. In particular \mathcal{A} can be represented as a diagonal matrix in the basis of normalized eigenvectors $\left\{\left|v_{j}\right\rangle\right\}$ with the corresponding eigenvalues $\left\{\lambda_{j}\right\}$ along the diagonal. Alternatively, we may form the projectors $\left|v_{j}\right\rangle\left\langle v_{j}\right|$ and write a projective decomposition of the operator as

$$
\mathcal{A}=\sum_{j} \lambda_{j}\left|v_{j}\right\rangle\left\langle v_{j}\right|=\sum_{j}\left|v_{j}\right\rangle \lambda_{j}\left\langle v_{j}\right| .
$$

The eigenvector $\left|v_{j}\right\rangle$ represents the state in which the physical property \mathcal{A} takes the value λ_{j}.

Probability: According to the probabilistic rule of Born, the probability that a state $|\psi\rangle$ possesses the value λ_{j} of a physical observable \mathcal{A} is the squared norm of the projection of $|\psi\rangle$ onto $\left|v_{j}\right\rangle$,

$$
\operatorname{Pr}\left(A=\lambda_{j}\right)=\left|\left\langle v_{j} \mid \psi\right\rangle\right|^{2} .
$$

Here we assume that both $|\psi\rangle$ and $\left|v_{j}\right\rangle$ are normalized; otherwise we would need to divide by their squared norms.

For example, in the normalized state $|\psi\rangle=\alpha|+\hat{z}\rangle+\beta|-\hat{z}\rangle$ the probability that the moment is up equals $|\alpha|^{2}$, and the probability the moment is down equals $|\beta|^{2}$. Since the moment
must be either up or down, we confirm that $\langle\psi \mid \psi\rangle=|\alpha|^{2}+|\beta|^{2}=1$. Consider a state such as $|\psi\rangle=(|\hat{z}\rangle+|-\hat{z}\rangle) / \sqrt{2}$. This state has 50% probability to be up in the \hat{z} direction, and 50% probability to be down. Curiously, as shown in the previous section, this particular state has also 100% probability to have its moment in the positive \hat{x} direction.

Since we know the probability to have a certain property (e.g. the value of the energy or the magnetic moment) we can calculate the expectation value of the property. This is the probability-weighted average of possible values and is also the predicted average if the property were to be measured repeatedly in multiple instances of the same state. Let $\left\{v_{j}\right\}$ be the set of possible values and $\operatorname{Pr}\left(v_{j}\right)$ be their probabilities, then the expectation value

$$
\langle v\rangle=\sum_{j} v_{j} \operatorname{Pr}\left(v_{j}\right)
$$

For example, the possible electron magnetic moments along \hat{z} are $m_{z}= \pm \mu_{B}$ and the average moment is $\left\langle m_{z}\right\rangle=\left(|\beta|^{2}-|\alpha|^{2}\right) \mu_{B}$. Since the energy $E=-m_{z} B$, the expectation value of the Hamiltonian is $\langle H\rangle=\left(|\alpha|^{2}-|\beta|^{2}\right) \mu_{B} B=-\left\langle m_{z}\right\rangle B$.

In general we can use the projective decomposition of the operator \mathcal{A} to evaluate the average of \mathcal{A} in any state $|\psi\rangle$. Since the probability of eigenvalue λ_{j} is

$$
\operatorname{Pr}\left(\lambda_{j}\right)=\left|\left\langle v_{j} \mid \psi\right\rangle\right|^{2}=\left\langle\psi \mid v_{j}\right\rangle\left\langle v_{j} \mid \psi\right\rangle,
$$

then summing over all eigenvectors results in

$$
\langle\mathcal{A}\rangle=\sum_{j}\left\langle\psi \mid v_{j}\right\rangle \lambda_{j}\left\langle v_{j} \mid \psi\right\rangle \equiv\langle\psi| \mathcal{A}|\psi\rangle .
$$

A separate type of probability enters if we lack information about the state of the system. Say we prepare the system in such a way that it enters state $|\psi\rangle$ with probability P_{ψ} but it enters a different orthogonal state $|\phi\rangle$ with probability P_{ϕ}. We refer to the individual states $|\psi\rangle$ and $|\phi\rangle$ as pure states, and the combination as a mixed state. In a mixed state, the average value of any observable is the probability-weighted average of the individual pure
state expectation values. In the pure states $|\psi\rangle$ and $|\phi\rangle$ the expectation values are $\langle\psi| \mathcal{A}|\psi\rangle$ and $\langle\phi| \mathcal{A}|\phi\rangle$. Hence, in the mixed state, the expectation value $\langle\mathcal{A}\rangle=P_{\psi}\langle\psi| \mathcal{A}|\psi\rangle+P_{\phi}\langle\phi| \mathcal{A}|\phi\rangle$.

Density operator: Another way to calculate expectation values, that will generalize nicely to quantum statistical mechanics, is through the use of a density operator. Given a normalized quantum state $|\psi\rangle$, we call the projector $\rho=|\psi\rangle\langle\psi|$ the density operator of the pure state $|\psi\rangle$. If we wish we can represent ρ as a matrix in some orthonormal basis basis $\{|m\rangle\}$. Write $|\psi\rangle=\sum_{m} c_{m}|m\rangle$ with $c_{m}=\langle m \mid \psi\rangle$ and $\langle\psi|=\sum_{n} c_{n}^{*}\langle n|$ with $c_{n}^{*}=\langle\psi \mid n\rangle$ so that $\rho=\sum_{m n} c_{m} c_{n}^{*}|n\rangle\langle m|$ has matrix elements $\rho_{m n}=\langle m| \rho|n\rangle=c_{m} c_{n}^{*}$. Notice that $\operatorname{Tr} \rho=\sum_{m}\left|c_{m}\right|^{2}=1$, which always holds for density operators, and also $\rho^{2}=\rho$ (because ρ is a projector) so that $\operatorname{Tr} \rho^{2}=1$, which holds only for pure states.

To evaluate the expectation value of an observable, \mathcal{A}, consider

$$
\begin{aligned}
\langle\mathcal{A}\rangle_{\rho} & =\langle\psi| \mathcal{A}|\psi\rangle \\
& =\sum_{m n}\langle\psi \mid m\rangle A_{m n}\langle n \mid \psi\rangle \\
& =\sum_{m n}\langle n \mid \psi\rangle\langle\psi \mid m\rangle A_{m n} \\
& =\sum_{n}\left(\sum_{m} \rho_{n m} A_{m n}\right) \\
& =\operatorname{Tr}(\rho \mathcal{A}) .
\end{aligned}
$$

Now, consider a mixed state $\rho=\sum_{k} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$, where $0<p_{k}<1$ is the probability to be in the $k^{\text {th }}$ orthogonal pure state $\left|\psi_{k}\right\rangle$. Note that $\operatorname{Tr}(\rho)=\sum_{k} p_{k}=1$, however $\rho^{2} \neq \rho$ and $\operatorname{Tr}\left(\rho^{2}\right)=\sum_{k} p_{k}^{2}<1$ in a mixed state. As the expectation value of \mathcal{A} is given by the average of pure state expectation values $\operatorname{Tr}\left(\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right| \mathcal{A}\right)$ weighted by the probabilities p_{k}, we have

$$
\langle\mathcal{A}\rangle_{\rho}=\operatorname{Tr}(\rho \mathcal{A})
$$

as before.

Schrödinger equation: The Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t}|\psi\rangle=H|\psi\rangle
$$

governs the time evolution of the quantum state $|\psi\rangle$, where H is the Hamiltonian. If $|\psi\rangle$ is an eigenstate of the Hamiltonian with energy $E \equiv \hbar \omega$, then the Schrödinger equation has the simple solution

$$
|\psi\rangle(t)=e^{-i \omega t}|\psi\rangle(0) .
$$

If $|\psi\rangle$ is not an energy eigenstate, then it can be expanded in a basis of energy eigenstates,

$$
|\psi\rangle=\sum_{n} c_{n}(t)|n\rangle
$$

where $|n\rangle$ obey $H|n\rangle=E_{n}|n\rangle$ and $c_{n}(t)=c_{n}(0) e^{-i E_{n} t / \hbar}$.
Note that the condition for $|\psi\rangle$ to be an energy eigenstate is

$$
H|\psi\rangle=E|\psi\rangle
$$

This equation is known as the time independent Schrödinger equation. If the Hamiltonian H can be expressed as an ordinary matrix (e.g. as for a spin $1 / 2$ system) then it becomes an ordinary eigenvalue equation. In other cases the Hamiltonian can be a differential operator, and the time independent Schrödinger equation becomes a differential equation. For example, for a particle of mass m moving continuously in a potential $V(\mathbf{r})$, the Hamiltonian is

$$
H=\frac{\mathbf{P}^{2}}{2 m}+V(\mathbf{r})
$$

where

$$
\mathbf{P}=\frac{\hbar}{i} \nabla
$$

is the momentum operator, and $\mathbf{P}^{2}=-\hbar^{2} \nabla^{2}$. The quantum state $|\psi\rangle$ becomes a wavefunction $\psi(\mathbf{r})=\langle\mathbf{r} \mid \psi\rangle$, with $\rho(\mathbf{r})=|\psi(\mathbf{r})|^{2}$ the probability density for the particle at position r.

Free particle motion occurs when the potential vanishes. In this case the time independent Schrödinger equation has solutions of the form $\psi_{\mathbf{k}}(\mathbf{r})=e^{i \mathbf{k} \cdot \mathbf{r}}$ with energy $E(\mathbf{k})=\hbar^{2}|\mathbf{k}|^{2} / 2 m$, and the time dependent Schrödinger equation has plane wave solutions

$$
\psi_{\mathbf{k}}(\mathbf{r}, t)=e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}
$$

where $\omega=E(\mathbf{k}) / \hbar$. Notice that we have a continuum of possible states, indexed by the wavevector \mathbf{k}, with the dispersion relation $\omega(\mathbf{k})$.

Sometimes we will apply special boundary conditions (e.g. confinement to a box, or periodic boundaries), in which case the allowed values of \mathbf{k} (and hence $E(\mathbf{k})$) become quantized. For a particle confined to a box via the potential

$$
V(x)=\left\{\begin{array}{cc}
0 & 0<x<L \\
+\infty & \text { else }
\end{array}\right.
$$

the eigenstates are $\psi(x)=\sqrt{2 / L} \sin \left(k_{n} x\right)$. Here $k_{n}=n \pi / L$, with n a positive integer, so that ψ vanishes at $x=0$ and L. With periodic boundary conditions such that $\psi(x+L)=$ $\psi(x)$, the eigenstates are $\sqrt{1 / L} e^{i k_{n} x}$ with $k_{n}=2 \pi / L$ and n an integer. In both cases the energies are $E_{n}=\hbar^{2} k_{n}^{2} / 2 m$.

The simple harmonic oscillator, characterized by the potential

$$
V(x)=\frac{1}{2} K x^{2}=\frac{1}{2} m \omega^{2} x^{2}
$$

is another important example. In this case the wavefunctions take the form of Gaussians multipled by Hermite polynomials, and the energies are quantized as

$$
E_{n}=(n+1 / 2) \hbar \omega
$$

