
Thermal Physics 2: Quantum Mechanics Review

States: In quantum mechanics the state of a system encodes all knowledge of its physical

properties. The set of all possible states is a complex vector space known as its Hilbert

space. Figure 1) illustrates the (complex) two-dimensional space for a spin 1/2 particle. We

employ Dirac’s bra(c)ket notation in which the state with spin up along ẑ is denoted as a

“ket”-vector represented by the symbol | ↑〉, |+ ẑ〉, or if the context is clear, simply as |+〉;

the spin down state is | ↓〉, | − ẑ〉, or |−〉. We assume these basis states are normalized to

have length 1. However, a state vector can be multiplied by an arbitrary complex number

α without altering its physical properties. For example α| + ẑ〉 still represents the physical

state of spin up along the +ẑ axis, even for the case α = −1.
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Figure 1: Hilbert space of spin 1/2 par-
ticle. Horizontal and vertical axes rep-
resent the rays {α|+ ẑ〉} and {β| − ẑ〉}
(with α, β ∈ C). The unit circle is the
set |α|2 + |β|2 = 1. An arbitrary state
vector |ψ〉 = α|+ ẑ〉+β|− ẑ〉. The state
|ψ〉 shown is normalized because it lies
on the unit circle.

One of the strange properties of quantum mechanics

is the possibility to create a superposition state such

as |ψ〉 = α| + ẑ〉 + β| − ẑ〉. The complex number α

represents the amplitude of the projection of |ψ〉 onto

|+ ẑ〉 and β the amplitude for | − ẑ〉. Geometrically,

the amplitude of a state vector |ψ〉 projected onto a

unit vector |φ〉 is the dot product of the two vectors,

denoted 〈φ|ψ〉. The projection itself lies in the di-

rection of |φ〉, hence the projection of |ψ〉 onto a |φ〉

is (〈φ|ψ〉)|φ〉 = (|φ〉〈φ|)|ψ〉. The useful combination

|φ〉〈φ| is known as the projector onto |φ〉. The sym-

bol 〈+φ| that is used to perform the inner product is

known as a “bra”-vector and is dual to the ket vector

|+φ〉. The dual to the ket-vector |ψ〉 is the bra-vector

〈ψ| = α∗〈+ẑ|+ β∗〈−ẑ|.

States with mutually exclusive properties, such as ±ẑ, are orthogonal. Thus 〈+ẑ| − ẑ〉 =

〈−ẑ| + ẑ〉 = 0. The inner product of a vector with itself is the square of its norm, ||ψ〉|2 =

〈ψ|ψ〉 = |α|2 + |β|2. The vector is normalized, i.e. a unit vector, if ||ψ〉|2 = 1.
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Operators: Observable properties such as spin, magnetic moment, energy, etc. are repre-

sented in quantum mechanics by operators. For example, in a state |E〉 of known energy E,

the energy operator (also called the Hamiltonian H) acting on the state returns the state

itself multipled by its energy, H|E〉 = E|E〉. Thus the state of known energy |E〉 is an

eigenvector of H with eigenvalue E. If the state is a superposition of states with different

energies, e.g. |ψ〉 = α1|E1〉+ α2|E2〉, then H|ψ〉 = α1E1|E1〉+ α2E2|E2〉.

For a spin-1/2 particle, states with spin up or down along the ẑ axis are eigenstates of the

z-component of spin, Sz, so that Sz| ± ẑ〉 = ±(~/2)| ± ẑ〉. Taking the kets | ± ẑ〉 as a basis,

we can represent the spin operator as a 2× 2 matrix,

Sz =
~
2

1 0

0 −1

 .

The 3-dimensional spin vector operator can be expressed as S = (~/2)~σ, where ~σ is a vector

of Pauli matrices with components

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 .

Particles cannot simultaneously possess definite values of the spin along different axes because

of the lack of commutation between different Pauli matrices. For example, σxσz 6= σzσx. You

can check that the superposition state |ψ〉 = (|+ ẑ〉+ | − ẑ〉)/
√

2 is an eigenstate of Sx with

eigenvalue +~/2, but it is not an eigenstate of Sz. This seeming contradiction shows that

we cannot specify the x̂ and ẑ properties simultaneously; they are incompatible.

We will often consider electrons coupled with magnetic fields via their magnetic moments

m = −gµBS/~. Here the − sign enters because of the negative charge on the electron,

g ≈ 2 is the g-factor, and µB = e~/2mc is the Bohr magneton. The energy of a magnetic

moment in an applied magnetic field B is −m ·B, hence the Hamiltonian for an electron in

a magnetic field B = Bẑ is

H = µBBσz
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where the g ≈ 2 has canceled against the 1/2 from the electron spin. Note that spin up (m

opposite to B) has high energy +µBB and spin down has low energy −µBB.

Any operator A can be represented as a matrix in an orthonormal basis. Let {|m〉} be a

complete basis for the Hilbert space. Then we can express the identity operator as

I =
∑
m

|m〉〈m|

and we can write

A = IAI =
∑
m

|m〉〈m|A
∑
n

|n〉〈n| =
∑
mn

|m〉Amn〈n|

where Amn = 〈m|A|n〉 is the matrix element of A between states |m〉 and |n〉. In particular

A can be represented as a diagonal matrix in the basis of normalized eigenvectors {|vj〉}

with the corresponding eigenvalues {λj} along the diagonal. Alternatively, we may form the

projectors |vj〉〈vj| and write a projective decomposition of the operator as

A =
∑
j

λj|vj〉〈vj| =
∑
j

|vj〉λj〈vj|.

The eigenvector |vj〉 represents the state in which the physical property A takes the value

λj.

Probability: According to the probabilistic rule of Born, the probability that a state |ψ〉

possesses the value λj of a physical observable A is the squared norm of the projection of

|ψ〉 onto |vj〉,

Pr (A = λj) = |〈vj|ψ〉|2.

Here we assume that both |ψ〉 and |vj〉 are normalized; otherwise we would need to divide

by their squared norms.

For example, in the normalized state |ψ〉 = α|+ ẑ〉+β|− ẑ〉 the probability that the moment

is up equals |α|2, and the probability the moment is down equals |β|2. Since the moment
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must be either up or down, we confirm that 〈ψ|ψ〉 = |α|2 + |β|2 = 1. Consider a state such

as |ψ〉 = (|ẑ〉 + | − ẑ〉)/
√

2. This state has 50% probability to be up in the ẑ direction, and

50% probability to be down. Curiously, as shown in the previous section, this particular

state has also 100% probability to have its moment in the positive x̂ direction.

Since we know the probability to have a certain property (e.g. the value of the energy

or the magnetic moment) we can calculate the expectation value of the property. This is

the probability-weighted average of possible values and is also the predicted average if the

property were to be measured repeatedly in multiple instances of the same state. Let {vj}

be the set of possible values and Pr(vj) be their probabilities, then the expectation value

〈v〉 =
∑
j

vjPr(vj).

For example, the possible electron magnetic moments along ẑ are mz = ±µB and the average

moment is 〈mz〉 = (|β|2 − |α|2)µB. Since the energy E = −mzB, the expectation value of

the Hamiltonian is 〈H〉 = (|α|2 − |β|2)µBB = −〈mz〉B.

In general we can use the projective decomposition of the operator A to evaluate the average

of A in any state |ψ〉. Since the probability of eigenvalue λj is

Pr(λj) = |〈vj|ψ〉|2 = 〈ψ|vj〉〈vj|ψ〉,

then summing over all eigenvectors results in

〈A〉 =
∑
j

〈ψ|vj〉λj〈vj|ψ〉 ≡ 〈ψ|A|ψ〉.

A separate type of probability enters if we lack information about the state of the system.

Say we prepare the system in such a way that it enters state |ψ〉 with probability Pψ but it

enters a different orthogonal state |φ〉 with probability Pφ. We refer to the individual states

|ψ〉 and |φ〉 as pure states, and the combination as a mixed state. In a mixed state, the

average value of any observable is the probability-weighted average of the individual pure
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state expectation values. In the pure states |ψ〉 and |φ〉 the expectation values are 〈ψ|A|ψ〉

and 〈φ|A|φ〉. Hence, in the mixed state, the expectation value 〈A〉 = Pψ〈ψ|A|ψ〉+Pφ〈φ|A|φ〉.

Density operator: Another way to calculate expectation values, that will generalize nicely

to quantum statistical mechanics, is through the use of a density operator. Given a normal-

ized quantum state |ψ〉, we call the projector ρ = |ψ〉〈ψ| the density operator of the pure

state |ψ〉. If we wish we can represent ρ as a matrix in some orthonormal basis basis

{|m〉}. Write |ψ〉 =
∑

m cm|m〉 with cm = 〈m|ψ〉 and 〈ψ| =
∑

n c
∗
n〈n| with c∗n = 〈ψ|n〉

so that ρ =
∑

mn cmc
∗
n|n〉〈m| has matrix elements ρmn = 〈m|ρ|n〉 = cmc

∗
n. Notice that

Tr ρ =
∑

m |cm|2 = 1, which always holds for density operators, and also ρ2 = ρ (because ρ

is a projector) so that Tr ρ2 = 1, which holds only for pure states.

To evaluate the expectation value of an observable, A, consider

〈A〉ρ = 〈ψ|A|ψ〉

=
∑
mn

〈ψ|m〉Amn〈n|ψ〉

=
∑
mn

〈n|ψ〉〈ψ|m〉Amn

=
∑
n

(∑
m

ρnmAmn

)
= Tr (ρA).

Now, consider a mixed state ρ =
∑

k pk|ψk〉〈ψk|, where 0 < pk < 1 is the probability to be

in the kth orthogonal pure state |ψk〉. Note that Tr (ρ) =
∑

k pk = 1, however ρ2 6= ρ and

Tr (ρ2) =
∑

k p
2
k < 1 in a mixed state. As the expectation value of A is given by the average

of pure state expectation values Tr (|ψk〉〈ψk|A) weighted by the probabilities pk, we have

〈A〉ρ = Tr (ρA),

as before.
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Schrödinger equation: The Schrödinger equation

i~
∂

∂t
|ψ〉 = H|ψ〉

governs the time evolution of the quantum state |ψ〉, where H is the Hamiltonian. If |ψ〉 is

an eigenstate of the Hamiltonian with energy E ≡ ~ω, then the Schrödinger equation has

the simple solution

|ψ〉(t) = e−iωt|ψ〉(0).

If |ψ〉 is not an energy eigenstate, then it can be expanded in a basis of energy eigenstates,

|ψ〉 =
∑
n

cn(t)|n〉

where |n〉 obey H|n〉 = En|n〉 and cn(t) = cn(0)e−iEnt/~.

Note that the condition for |ψ〉 to be an energy eigenstate is

H|ψ〉 = E|ψ〉.

This equation is known as the time independent Schrödinger equation. If the Hamiltonian

H can be expressed as an ordinary matrix (e.g. as for a spin 1/2 system) then it becomes an

ordinary eigenvalue equation. In other cases the Hamiltonian can be a differential operator,

and the time independent Schrödinger equation becomes a differential equation. For example,

for a particle of mass m moving continuously in a potential V (r), the Hamiltonian is

H =
P2

2m
+ V (r)

where

P =
~
i
∇

is the momentum operator, and P2 = −~2∇2. The quantum state |ψ〉 becomes a wavefunc-

tion ψ(r) = 〈r|ψ〉, with ρ(r) = |ψ(r)|2 the probability density for the particle at position

r.
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Free particle motion occurs when the potential vanishes. In this case the time independent

Schrödinger equation has solutions of the form ψk(r) = eik·r with energy E(k) = ~2|k|2/2m,

and the time dependent Schrödinger equation has plane wave solutions

ψk(r, t) = ei(k·r−ωt)

where ω = E(k)/~. Notice that we have a continuum of possible states, indexed by the

wavevector k, with the dispersion relation ω(k).

Sometimes we will apply special boundary conditions (e.g. confinement to a box, or periodic

boundaries), in which case the allowed values of k (and hence E(k)) become quantized. For

a particle confined to a box via the potential

V (x) =

 0 0 < x < L

+∞ else,

the eigenstates are ψ(x) =
√

2/L sin (knx). Here kn = nπ/L, with n a positive integer, so

that ψ vanishes at x = 0 and L. With periodic boundary conditions such that ψ(x + L) =

ψ(x), the eigenstates are
√

1/L eiknx with kn = 2π/L and n an integer. In both cases the

energies are En = ~2k2n/2m.

The simple harmonic oscillator, characterized by the potential

V (x) =
1

2
Kx2 =

1

2
mω2x2

is another important example. In this case the wavefunctions take the form of Gaussians

multipled by Hermite polynomials, and the energies are quantized as

En = (n+ 1/2)~ω.
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