
NAME: SOLUTIONS

33-342 Thermal Physics II Final Exam Friday, May 8, 2020

0. Have you completed your FCE, or will you do so? Yes (1 point)/No (0 points)

1. Consider the Ising model on a hypercubic lattice of dimension d > 1 (i.e. square, simple

cubic, etc..), with Hamiltonian

H = −J
∑
〈ij〉

σiσj.

Let M =
∑

i σi be the magnetization of a configuration ~σ = {σi}, and let E be the value of the

Hamiltonian H for this configuration.

(a) Express ∂〈M〉/∂T in terms of averages involving M and E.

Answer: Start with

〈M〉 =
1

Z

∑
~σ

Me−βH

Recall that ∂/∂β = −kBT 2∂/∂T , and that 〈E〉 = −∂Z/∂β. Thus we find

∂〈M〉
∂T

= − 1

kBT 2
(〈EM〉 − 〈E〉〈M〉) .

(b) According to a low temperature series expansion (e.g. see solutions to the 2018 final exam),

the magnetization M ≈ N−2Ne−4dβJ . Briefly explain the factor of 2N multiplying the exponential,

and the factor of 4d in the exponent.

Answer: Flipping a single spin reduces M replaces +1 with -1 for a net change of 2.

There are N individual spins that can flip, yielding a factor of 2N multiplying the flip

probability. A single spin flip breaks 2d bonds, for a net energy change of ∆E = 4dJ .

Thus exp−β∆E = exp (−4dβJ) is the flip probability (at low temperature).

(c) With what critical exponent do you expect ∂M/∂T to vary as T → T−c ? Does ∂M/∂T

vanish, or diverge?

Answer: Since M ∼ (Tc−T )β, we have ∂M/∂T ∼ (Tc−T )β−1. We know that β ≤ 1/2

in all dimensions, so ∂M/∂T must diverge.



2. The following questions study spins interacting with effective fields due to their environments.

(a) An Ising spin σ = ±1 is surrounded by spins that are fixed in the up (+1) orientation. It

interacts with each of its z neighbors with a bond energy −Jσ with J > 0. What is the probability

that the spin takes value σ?

Answer:

P (σ) =
eβJzσ

eβJz + e−βJz
=

eβJzσ

2 cosh βJz

(b) Determine the low and high temperature limits of 〈σ〉, in each case keep the limiting value

and the first temperature-dependent correction.

Answer: Using (a) to take the average yields

〈σ〉 =
eβJz − e−βJz

eβJz + e−βJz
= tanh (βJz)

At low temperature, write tanh (x) = (1− e−2x)/(1 + e−2x) ≈ 1− 2e−2x, so that 〈σ〉 =

1− 2e−2βJz, same as in part 1(b).

(c) The mean field self-consistent equation for magnetization is m = tanh (βJzm). Evaluate

the limiting value and first temperature-dependent correction for m as T → 0. Be sure to justify

any assertions or approximations that you make.

Answer: Taking the same expansion for tanh of large arguments we obtain the implicit

transcendental equation

m = 1− 2e−2βJzm.

Since m → 1 as T → 0, we may substitute m = 1 in the exponential to obtain m ≈

1− e−2βJz.

(d) In the presence of an external magnetic field, the self-consistent equation ism = tanh (β(Jzm+ h)).

Calculate the two leading terms in m as T → ∞ at fixed h > 0. Again, be sure to justify any ap-

proximations or assertions that you make.

Answer: For small arguments we expand tanhx ≈ x − x3/3 and thus obtain the self-

consistent cubic equation

m = β(Jzm+ h)− 1

3
(β(Jzm+ h))3.



Since β → 0, we tentatively drop the cubic term and solve for

m =
βh

1− βJz
≈ (β + β2Jz)h

Since β3 � β2, we were justified in dropping the cubic term.

3. For the second year in a row, the universe has collapsed and you are stuck in a space

of dimension d with volume V = Ld at a high temperature T . The photon dispersion relation

became nonlinear again, so that ω = cks, with c and s positive constants. The photons now obey

a conservation law so that their total number N is fixed, and their chemical potential µ need not

vanish. Luckily, no other physical laws have changed. For example, the occupation of a bosonic

state of energy E = ~ω is still given by

〈nω〉 =
1

eβ(~ω−µ) − 1
.

To survive you must extract energy from excited state photons.

(a) Demonstrate that the photon density of states is D(ω) = Aωd/s−1, and determine the value

of A.

Answer: The allowed wavevectors are k = π
L
n, with n a d-dimensional vector of positive

integers. The number of states with frequency less than ω is

N (ω) =
1

2d

(
L

π

)d
Vd

(ω
c

)d/s
where the 1/2d factor comes from the restriction to positive integers, and Vd is the

prefactor for d-dimensional volumes (i.e. V1 = 2, V2 = π, and V3 = 4π/3). The density

of states is

D(ω) =
dN
dω

=
d

s

N (ω)

ω
= Aωd/s−1, A =

1

2d

(
L

π

)2(
d

scs

)
Vd

assuming just a single polarization state. Multiply by an appropriate factor if your

strange photons have multiple polarization states.

(b) Write down (but do not attempt to evaluate) an integral relationship between the number

of photons present, N , and their chemical potential, µ.

Answer: The total number is the integral of the number at each frequency

N =

∫
dω

D(ω)

eβ(~ω−µ) − 1



(c) Unfortunately, after you completed the previous calculation, the temperature dropped and

some of the photons have Bose condensed! How many excited state photons, Ne, remain out of the

original N that were present? You may wish to look in Wikipedia to find the integral representation

of the Riemann zeta function as an aid to evaluate the number.

Answer: Bose condensation sends µ→ 0−. The excited state photons are still counted

in the value of the integral, hence

Ne =

∫
dω

D(ω)

eβ~ω − 1
= Aζ(d/s)

(d) The occurrence of Bose condensation taught you some useful information concerning d and

s. What did you learn?

Answer The zeta function ζ(p) diverges at p = 1 and is negative for p < 1. Hence we

must have d > s. This can also be checked by expanding eβ~ω − 1 for small ω and the

looking for the condition for convergence of the integral at small ω.

(e) Imagine that you have a d-dimensional solid body of N atoms in volume V = Ld. The atoms

interact with a strange potential leading to the dispersion relation ω = cks.

(i) Write down a formal expression that determines the Debye frequency ωD.

Answer: (i) The Debye frequency is set by the requirement that N (ωD) = N , assuming

one degree of freedom per atom.

(ii) The Debye frequency v aries with density as (N/V )q for some power q. Determine q and

check that it has the expected value for d = 3 and s = 1 (i.e. ordinary phonons).

Answer: (ii) Since N (ω) ∼ V ωd/s, we have ωd ∼ (N/V )s/d. For ordinary phonons

s/d = 1/3.


