Boltzmann distribution in the canonical ensemble

1. Consider N identical, but distinguishable, particles with eigenstates $\{\alpha\}$. The total energy $E = \sum_{\alpha} n_{\alpha} E_{\alpha}$. Demonstrate that the mean occupation of a specific state α is

$$\langle n_{\alpha} \rangle = -\frac{1}{\beta} \frac{\partial \ln Z}{\partial E_{\alpha}}$$

- 2. Assuming $Z = z_1^N / N!$, with $z_1 = \sum_{\alpha} \exp(-\beta E_{\alpha})$, find an expression for $\langle n_{\alpha} \rangle$.
- 3. In how many ways, $\Omega(n_1, n_2, ...)$, can the N particles be distributed into so that n_1 are in the first state, n_2 are in the second state, etc.? Notice that $\sum_{\alpha} n_{\alpha} = N$.
- 4. Define

$$\tilde{Z} = \sum_{n_1, n_2, \cdots} \Omega(n_1, n_2, \dots) e^{-\beta(n_1 E_1 + n_2 E_2 + \dots)}$$

and compare with the multinomial expansion of $(e^{-\beta E_1} + e^{-\beta E_2} + \cdots)^N$ to find a simple expression for \tilde{Z} . Compare \tilde{Z} with $Z = z_1^N/N!$ and discuss.