Boltzmann distribution in the canonical ensemble

1. Consider N identical, but distinguishable, particles with eigenstates $\{\alpha\}$. The total energy $E = \sum_\alpha n_\alpha E_\alpha$. Demonstrate that the mean occupation of a specific state α is

$$\langle n_\alpha \rangle = -\frac{1}{\beta} \frac{\partial \ln Z}{\partial E_\alpha}. $$

2. Assuming $Z = z_1^N / N!$, with $z_1 = \sum_\alpha \exp (-\beta E_\alpha)$, find an expression for $\langle n_\alpha \rangle$.

3. In how many ways, $\Omega(n_1, n_2, \ldots)$, can the N particles be distributed into so that n_1 are in the first state, n_2 are in the second state, etc.? Notice that $\sum_\alpha n_\alpha = N$.

4. Define

$$\tilde{Z} = \sum_{n_1, n_2, \ldots} \Omega(n_1, n_2, \ldots) e^{-\beta (n_1 E_1 + n_2 E_2 + \cdots)}$$

and compare with the multinomial expansion of $(e^{-\beta E_1} + e^{-\beta E_2} + \cdots)^N$ to find a simple expression for \tilde{Z}. Compare \tilde{Z} with $Z = z_1^N / N!$ and discuss.