Boltzmann distribution in the canonical ensemble

1. Consider N identical, but distinguishable, particles with eigenstates $\{\alpha\}$. The total energy $E=\sum_{\alpha} n_{\alpha} E_{\alpha}$. Demonstrate that the mean occupation of a specific state α is

$$
\left\langle n_{\alpha}\right\rangle=-\frac{1}{\beta} \frac{\partial \ln Z}{\partial E_{\alpha}} .
$$

2. Assuming $Z=z_{1}^{N} / N$!, with $z_{1}=\sum_{\alpha} \exp \left(-\beta E_{\alpha}\right)$, find an expression for $\left\langle n_{\alpha}\right\rangle$.
3. In how many ways, $\Omega\left(n_{1}, n_{2}, \ldots\right)$, can the N particles be distributed into so that n_{1} are in the first state, n_{2} are in the second state, etc.? Notice that $\sum_{\alpha} n_{\alpha}=N$.
4. Define

$$
\tilde{Z}=\sum_{n_{1}, n_{2}, \cdots} \Omega\left(n_{1}, n_{2}, \ldots\right) e^{-\beta\left(n_{1} E_{1}+n_{2} E_{2}+\cdots\right)}
$$

and compare with the multinomial expansion of $\left(e^{-\beta E_{1}}+e^{-\beta E_{2}}+\cdots\right)^{N}$ to find a simple expression for \tilde{Z}. Compare \tilde{Z} with $Z=z_{1}^{N} / N$! and discuss.

