Fermi-Dirac Quantum Gas Problem 2: Specific heat

Using the programs that you've written for quantum gases, carry out the following calculations for Fermi-Dirac statistics.

The Fermi temperature is given by the equation

$$
k_{B} T_{F}=A\left(\frac{3 N}{\pi}\right)^{2 / 3}
$$

It is discussed in the book and will be discussed in class. For this assignment, all you need to know is that it is a characteristic temperature for an ideal gas of fermions.

For $N=1000$ particles, in a box of size $L=\pi$ (i.e. $A=1$), make three plots of the specific heat as a function of temperature. Let the lowest temperature be $T=0.01$ for all three plots. Let the highest temperatures be $T / T_{F}=.001, T / T_{F}=.01, T / T_{F}=0.1$, and $T / T_{F}=2.0$.

1. For $T / T_{F}<0.001$, the specific heat is seen to be very small. Why is this true?
2. In a temperature range of about $T=.02 T_{F}$ up to $T=0.1 T_{F}$, how does the specific heat behave. Explain why this is to be expected.
3. For T much larger than T_{F}, the specific heat seems to be going to a constant value. Derive the value of this constant. Is the value you derived consistent with your plots?
