Correlation functions of the Ising chain

This problem considers the Ising chain with Hamiltonian

$$H = -J\sum_{j=1}^{N} \sigma_j \sigma_{j+1} - \sum_{j=1}^{N} h_j \sigma_j$$

Note that the magnetic field may differ among sites, although we will mainly be interested in the case where all fields vanish, $\vec{h} = \vec{0}$. Assume periodic boundary conditions.

(a) Show that $m_i \equiv \langle \sigma_i \rangle = -\partial F / \partial h_i$

(b) Show that
$$\chi_{ik} \equiv \partial m_i / \partial h_k = -\partial^2 F / \partial h_i \partial h_k = \beta (\langle \sigma_i \sigma_k \rangle - \langle \sigma_i \rangle \langle \sigma_k \rangle).$$

(c) Show that χ_{ik} is translation invariant when $\vec{h} = \vec{0}$. Hence $\chi_{ik} = g(x)$, where x = k - i. Interpret the meaning of g(x).

(d) Show that

$$\sum_{x=-N/2}^{N/2} g(x) = \chi_0,$$

with χ_0 the zero field magnetic susceptibility.