Quantum Mechanics Review: homework #1

1. If \(\{|m\rangle, m \in \mathbb{N} \} \) is a complete set of eigenstates of a Hamiltonian \(H \) with nondegenerate energies \(E_m \), and \(|\psi\rangle = \sum_m c_m |m\rangle \), what is the probability that the system has energy \(E_m \) for some particular \(m = n \)? What is the average energy of the system?

2. Give the eigenstates and their energies for a spin 1/2 particle in an applied magnetic field, \(B = B\hat{z} \).

3. For a spin 1 particle the eigenstates of \(S_z \) are \(\{|+\hat{z}\rangle, |0\hat{z}\rangle, |-\hat{z}\rangle \} \) with eigenvalues, respectively, \(+\hbar \), 0, and \(-\hbar \). However, the action of \(S_x \) is:

\[
S_x|+\hat{z}\rangle = (\hbar/\sqrt{2})|0\hat{z}\rangle, \quad S_x|0\hat{z}\rangle = (\hbar/\sqrt{2})(|+\hat{z}\rangle + |-\hat{z}\rangle), \quad S_x|-\hat{z}\rangle = (\hbar/\sqrt{2})|0\hat{z}\rangle.
\]

(i) Represent \(S_z \) and \(S_x \) as \(3 \times 3 \) matrices in the \(\hat{z} \) basis.

(ii) Express the ket-vector \(|+\hat{x}\rangle \) as a linear combination in the \(\hat{z} \) basis.

(iii) What is the inner product \(\langle 0\hat{z}|+\hat{x}\rangle \)?