Quantum Gas Problem 2

In the previous assignment, you wrote a function to compute the average number of bosons, $N=\langle N\rangle$, given the temperature T and the chemical potential μ. In this assignment, you will invert the function $N=N(\mu, T)$ to compute $\mu=\mu(T, N)$.

We will only consider bosons for this assignment, but write your program using the more general occupation number of a single-particle state with energy ϵ

$$
\begin{equation*}
\left\langle n_{\epsilon}\right\rangle=(\exp (\beta(\epsilon-\mu))+\sigma)^{-1} \tag{1}
\end{equation*}
$$

To invert the equation $N=N(\mu, T)$ we use the fact that N is a monotonically increasing function of μ. The basic algorithm begins with an interval (μ_{-}, μ_{+}) large enough to contain the desired value of $\mu(T, N)$. Fortunately, the choice is not very delicate. We then follow an iterative procedure until we find a value of μ that gives the correct number of particles. The suggested criterion is that $\left|\mu_{+}-\mu_{-}\right|<\delta \mu$, where $\delta \mu \approx 10^{-4}$.

1. Calculate $\mu_{\text {trial }}=\left(\mu_{-}+\mu_{+}\right) / 2$.
2. Calculate $N_{\text {trial }}=N\left(\mu_{\text {trial }}, T\right)$.
3. If $N_{\text {trial }}>N$ then set $\mu_{+}=\mu_{\text {trial }}$; else if $N_{\text {trial }}<N$ then set $\mu_{-}=\mu_{\text {trial }}$.
4. Check to see if $\mu_{+}-\mu_{-}<\delta \mu$. If not, return to step 1 .

QUESTIONS:

1. Write a Python program to compute $\mu=\mu(T, N)$ over a set of uniformly spaced temperatures.
2. For $N=1$ bosons in a box of edge length $L=1$, use your program to compute and plot $\mu(T)-E_{0}$ (recall that the ground state energy $E_{0} \neq 0$), the ground state occupation $\left\langle n_{0}(T)\right\rangle$, and the first excited state occupation $\Omega_{1}\left\langle n_{1}\right\rangle$ (Ω_{1} is the degeneracy of the first excited state) for uniformly spaced values of T between $T=T_{B E} / 10$ and
$T=2 T_{E}$, where $T_{B E}=\left(4 \pi / k_{\mathrm{B}}\right)\left(\hbar^{2} / 2 m\right)(N / 2.612 V)^{(2 / 3)}$ is the Bose-Einstein transition temperature.
3. Repeat for boxes of edge length $L=2,3,4,5, \ldots$ containing $N=L^{3}$ identical bosons. How does the behavior change with increasing L and N ? Do you notice interesting behavior around $T_{B E}$?
