
NAME: SOLUTIONS

33-448 Solid State Physics Midterm #3 Monday, April 4, 2016

Note that problems 1 and 2 require brief written explanations of reasoning in a few sentences
without lengthy derivation.

1. Heat capacity
The electronic density of states varies as D(E) ∼ E−1+d/2 in spatial dimension d, yet the
electronic heat capacity varies as Cel ∼ T p, where the power p is independent of dimension d.
Briefly explain the value of p. Why does it not depend on dimension, while the power law for
vibrational heat capacity (Cvib) does depend on d?

Answer: Electrons absorb heat by excitation from kT below the Fermi energy to kT
above. The number of excitable electrons is thus D(EF )kT , so that Eel ∼ D(EF )(kT )2

and hence Cel ∼ D(EF )k2T . The Fermi energy EF is independent of temperature
owing to Pauli exclusion. In contrast, vibrations absorb heat by creating phonons of
energy ~ω with frequency up to kT/~, and the phonon density of states vanishes at
low frequency.



2. Pauli paramagnetism
Every electron has magnetic moment ±µẑ. In the presence of a magnetic field B = Bẑ, electrons
with moment “up” (parallel to the magnetic field) drop in energy by −µB, while those with
moment down (opposite to the field) rise in energy by +µB. Some electrons flip their moments to
align with the applied field so as to reduce the total energy. This effect is illustrated in the figure
below, taken from Kittel chapter 11. Let T = 0K (absolute zero) in the following.

Let N+ be the numer of spin up electrons, N− the number of spin down, and M ≡ (N+ −N−)µ be
the net magnetization. For weak applied fields, the magnetization M = [µ]p[D(EF )]q[B]r, where
p, q and r are powers of moment, Fermi level density of states and field, respectively. Without any
explicit derivation, state the values of p, q and r and briefly justify your assertions.

Answer:

p = 2: because one power of µ comes from the shift in energy (and thus the effective
Fermi levels for moments up and down), while the other is the factor of µ in the
definition of M . Alternatively, reversing the moment of each electron prior to applying
the field yields a system physically equivalent to the starting case, and hence it’s
magnetic response must be unaltered.

q = 1: because the electrons whose moments reverse must lie close to the Fermi energy,
and their number is proportional to D(EF ).

r = 1: because the energy shift (and hence the number of flipped electrons) is
proportional to B. Alternatively, reversing the applied field must reverse the
magnetization. This is actually the definition of paramagnetism.



3. Frequency-dependent conductivity (adapted from Kittel #6.6)
Recall the drift velocity equation m (d/dt+ 1/τ) v = qE for particles of mass m and charge q. Let
the electric field oscillate as E = E0e−iωt with ω > 0 a fixed value.
(a) Derive a formula for the frequency-dependent complex conductivity σ(ω) ≡ j/E, where j is
the current density. Show the steps of your derivation, define any additional quantities you may
need to introduce, and express your answer in the form σ(ω) = σ0f(ω), where σ0 is the static
conductivity.

Answer: Assume v = v0e
−iωt and solve for v0 = E0/(−iω + 1/τ). Writing j = qnv and

placing the complex factor in the numberator yields

j =

(
nq2τ

m

)(
1 + iωτ

1 + (ωτ)2

)
(b) Show that the current j falls out of phase with the electric field E in the limit of large
relaxation time τ . What causes this phase lag, and what impact does it have on the average
energy dissipation?

Answer: For large τ the current approaches j = inq2/mω. The factor of i =
√
−1

causes a 90◦ phase lag relative to the electric field. The reason is that the charges
accelerate when the field is large, but they reach their maximum velocity as the field
vanishes. Since the product of field (force) times current (velocity) is equally often
positive and negative, energy does not dissiate on average. This is consistent with the
long relaxation time which imples diverging real conductivity (vanishing resistance).


