This course is an introduction to the physics of quantum information and quantum computing. The topic is highly interdisciplinary, touching upon many mathematical, scientific and engineering domains. It is assumed that students are mathematically proficient, and know the basics of quantum mechanics at the level of two state systems. We will develop principals of information theory and quantum dynamics leading up to the design and operation operation of quantum gates and algorithms that exploit their novel capabilities. Ultimately we will write simple code to run on an IBM cloud quantum computer.

A course web site at http://euler.phys.cmu.edu/widom/teaching/33-658 contains this syllabus plus links to day-by-day lecture coverage and weekly homework assignments.

Books:
1. Schumacher and Westmoreland, Quantum Processes Systems, and Information
2. Nielsen and Chuang, Quantum Computation and Quantum Information
3. Mermin, Quantum Computer Science
4. Feynman, Lectures on Computation

We mainly use the book by Schumacher and Westmoreland, chapters 1-9 and 18-20. The other books are useful and interesting references. Other papers and notes will be placed on Canvas.

Online Resources:
1. Preskill Lecture notes on quantum computing and quantum information
2. Aaronson Lecture notes! Intro to Quantum Information Science
3. de Wolf Quantum Computing; Lecture Notes
4. Berkeley Qubits,Qubits, Quantum Mechanics, and Computers
5. IBM Q Cloud quantum computing

Grading: Letter grades will be based on homework, a midterm exam on Tuesday October 19, and a final exam (date to be determined), in proportions of 20:30:50. Homework assignments are listed at http://euler.phys.cmu.edu/widom/teaching/33-658/hw.html.

Course Outline:

Note this outline is only approximate. Actual class coverage can be found here.
1. Classical Shannon information, Maxwell's demon and Landauers principle
2-3. Quantum review, cryptography
4. Unitary transformations, entanglement. Quantum key distribution
5. EPR, Bell and GHZ paradoxes. Quantum logic gates
History

- 1970 Stephen Wiesener Quantum money
- 1982 Richard Feynman Quantum simulator
- 1984 Charles Bennett Cryptographic key distribution
- 1985 David Deutsch Universal quantum computer
- 1992 Deutsch-Josza Q-Comp > C-Comp
- 1994 Peter Shor Exponential speedup (factoring)
- 1995 Peter Shor Quantum error correction
- 1996 Lov Grover Quadratic speedup (search)
- 2001 IBM factors $N = 15$ by NMR
- 2003 Innsbruck runs Deutsch-Josza on ion trap - bit
- 2007 Yale develops transmon superconducting q
- 2017 China achieves ground-to-satellite teleportation
- 2019 Google claims quantum supremacy
Information - a physical quantity

how to quantify it how to use it

Probability distribution

\[P(t) \geq 0 \quad \sum_{t \in T} P(t) = 1 \]

Information \(I(t) = -\log_2 P(t) \) units bits

- \(-\ln P\) " nats
- \(-k_B \ln P\) " Joule/Kelvin

Why \(\log \)? Game of 20 questions \(P = 1/N \quad N \approx 127,000 \) words

bisection strategy: # yes/no questions = \(\log_2 N \approx 16.9 \)

Proof that \(I = -\log P \)

Let \(P_0 = 1 - S \)

1. \(I(P(t)) \geq 0 \)
2. \(I(P) \downarrow \) as \(P \uparrow \)
3. \(I(1) = 0 \)
4. \(I(P) \) Smooth
5. \(I(P(t_1), P(t_2)) = I(P(t_1)P(t_2)) \)

\[= I(P(t_1)) + I(P(t_2)) \]
Improved strategy for 20 questions

Word usage frequency (http://wordfrequency.info)

Top $N = 5,000$ words

$$\log N = 12.3$$

Shannon (1948)

$$H = - \sum_i P_i \log P_i = 9.3$$

Save 3 questions!

Correlated variables e.g. dice

$X = \text{value on top}$

$Y = \text{value on bottom}$ \quad \{ \text{perfectly correlated} \}

$X = \text{value on top} \quad \text{e.g. 1}$

$Y = \text{value on face} \quad \text{e.g. 2, 3, 4, 5}$

$$H(X) = \log 6 \quad H(X,Y) = \log 24$$ \quad \text{joint entropy}

$$H(Y) = \log 6 \quad H(Y|X) = \log 4$$

$$H(X|Y) = \log 4$$ \quad \text{conditional entropy}

Chain rule

$$H(Y|X) = H(X,Y) - H(X) = \log 24 - \log 6 = \log 4$$

Mutual information

$$I(X;Y) = H(X) + H(Y) - H(X,Y) = \log 32$$

$$\log 6 \quad \log 6 \quad \log 24$$
Bioinformatics

DNA sequence ACCT \(\cdots \)
\[H = \log_2 4 = 2 \]
Actual is 1.9 - 2.0

Codons
\[H = \log_2 6^3 = 6 \]
Actual is 5.2 - 5.8

Amino acids ABCEF \(\cdots \)
\[\log 2.2 = 1.5 \]
Actual is 3.6 - 4.2

\[4^3 = 64 \Rightarrow \text{codon redundancy} \]

\[\text{e.g., } CAI = Q, \text{ CAG = Q} \]

Mutual information after \(k \) base pairs (Grosse, 2000)

![Graph of mutual information vs. distance](image)

- **Coding DNA**
- **Non-coding "junk" DNA**

Venn diagram