1. (70 points)

Consider a pair of qubits in the composite Hilbert space $\mathcal{H}_{Q M}$. We name the first qubit $Q$ (the "quantum system") and the second $M$ (the "measuring device"). The measuring device has a ready state $|b=0\rangle$ a complementary state $|b=1\rangle$. The measuring qubit will itself be measured in the basis $| \pm\rangle=(|0\rangle \pm|1\rangle) / \sqrt{2}$. We define a generalized measurement

$$
U:|\psi\rangle \otimes|b\rangle \rightarrow M_{+}|\psi\rangle \otimes|+\rangle+(-1)^{b} M_{-}|\psi\rangle \otimes|-\rangle
$$

where the measurement operators

$$
M_{+}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\frac{1}{\sqrt{2}} \mathbf{1}, \quad M_{-}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\frac{1}{\sqrt{2}} \boldsymbol{\sigma}_{3} .
$$

(a) Show that $U$ is unitary.

Answer: We must show preservation of inner products. Define $|A\rangle=U|\psi\rangle|b\rangle$ and $\langle B|=\left\langle b^{\prime}\right|\langle\phi| U^{\dagger}$, and note that

$$
M_{+}^{\dagger} M_{+}=M_{-}^{\dagger} M_{-}=\frac{1}{2} \mathbf{1}
$$

The inner product

$$
C=\langle B \mid A\rangle=\langle\phi| M_{+}^{\dagger} M_{+}|\psi\rangle+\langle\phi| M_{-}^{\dagger} M_{-}|\psi\rangle=\frac{1}{2}\langle\phi \mid \psi\rangle+\frac{1}{2}(-1)^{b+b^{\prime}}\langle\phi \mid \psi\rangle
$$

vanishes unless $b=b^{\prime}$, in which case $C=\langle\phi \mid \psi\rangle$. Hence inner products are preserved.
(b) Measuring $M=m$ in the $\{|m= \pm\rangle\}$ basis leaves $Q$ in the state $M_{m}|\psi\rangle$, up to normalization. According to the Born rule, the probability of measurement outcome $m$ is

$$
P(m)=\langle 0|\langle\psi| U^{\dagger}\left(I_{Q} \otimes|m\rangle\langle m|\right) U|\psi\rangle|0\rangle .
$$

Evaluate $P(+)$ and the resulting normalized state $\left|\psi^{\prime}\right\rangle$.
Answer: We have

$$
\begin{aligned}
P(+) & =\langle 0|\langle\psi| U^{\dagger}\left(I_{Q} \otimes|+\rangle\langle+|\right) U|\psi\rangle|0\rangle \\
& \left.=\langle 0|\langle\psi| M_{+}^{\dagger} M_{+}|\psi\rangle|0\rangle=\left|M_{+}\right| \psi\right\rangle\left.\right|^{2}=\frac{1}{2}
\end{aligned}
$$

The normalized state is simply $\left|\psi^{\prime}\right\rangle=M_{+}|\psi\rangle / \sqrt{P(+)}=|\psi\rangle$.
(c) Immediately following the initial measurement that resulted in $M=m$, qubit $M$ is reset to $|0\rangle$ without disturbing qubit $Q$. A second measurement is performed resulting in outcome $m^{\prime}$. Evaluate the conditional probability $P\left(m^{\prime}=-\mid m=+\right)$.

Answer: The conditional probability

$$
P\left(m^{\prime}=-\mid m=+\right)=\frac{\left.\left|M_{-} M_{+}\right| \psi\right\rangle\left.\right|^{2}}{P(+)}=\frac{1}{2}
$$

Since the measurement states are not orthogonal, the measurement outcomes are not exclusive.
(d) Consider the initial pure state density operator $\rho_{Q}=|\psi\rangle\langle\psi|$. The state is measured, as described above, but the measurement outcome is not reported. The new state $\rho_{Q}^{\prime}=\mathcal{E}\left(\rho_{Q}\right)$ is given by a mapping of operators. Express this mapping in terms of the operators $M_{ \pm}$.

Answer: The mapping

$$
\mathcal{E}\left(\boldsymbol{\rho}_{Q}\right)=\sum_{m} M_{m} \boldsymbol{\rho}_{Q} M_{m}^{\dagger}
$$

yields the correct states with the correct probabilities. That is, the set $\left\{M_{ \pm}\right\}$are the Kraus operators for the mapping.
2. (30 points) Replace the question marks in the following circuit equivalence diagram.


Answer: Define the cnot gate $\boldsymbol{C}_{i j}|x\rangle|y\rangle=|x\rangle|x \oplus y\rangle$ where addition is taken mod 2 . Then $\boldsymbol{C}_{i j} X_{i}|x\rangle|y\rangle=|x \oplus 1\rangle|x \oplus 1 \oplus y\rangle=\boldsymbol{X}_{i} \boldsymbol{X}_{j} \boldsymbol{C}_{i j}|x\rangle|y\rangle$. Thus each gate ? and ?? is $\boldsymbol{X}$.
3. (60 points) Consider the circuit below. Each qubit is a spin- $1 / 2$ particle in magnetic field at temperature $T$, with the same initial density operators $\boldsymbol{\rho}$. That is, the initial state is a tensor product of three mixed state density operators. The operations are: controlled not ( $b$ is the control for target $c$ ); logical not on $c$; a Fredkin gate (controlled swap) that swaps qubits $a$ and $b$ if $c=1$.

(a) Consider spin $a$. Its density operator can be written

$$
\boldsymbol{\rho}_{a}=\frac{1}{2}\left(\begin{array}{cc}
1+\eta & 0 \\
0 & 1-\eta
\end{array}\right)
$$

Calculate the thermodynamic entropy $S_{\theta}(\boldsymbol{\rho})$ as a function of the bias $\eta$. How does this vary for small $\eta$ ?
answer: Summing over eigenvalues of $\boldsymbol{\rho}$, and setting $k_{\mathrm{B}}=1$,

$$
S_{\theta}=-\sum_{k} \rho_{k k} \ln \rho_{k k}=-\frac{1}{2}(1+\eta) \ln \left(\frac{1}{2}(1+\eta)\right)-\frac{1}{2}(1-\eta) \ln \left(\frac{1}{2}(1-\eta)\right) .
$$

For small $\eta$ this varies as $S=\ln 2-\eta^{2} / 2+\ldots$.
(b) Determine the density operator $\boldsymbol{\rho}_{b c}^{\prime}$ following the controlled not operation. i.e. trace out, or simply disregard, spin $a$.

Answer: First, note the product $(1+\eta)(1-\eta)=1-\eta^{2}$. Expressing the density operator as a matrix in the basis as $\{|b c\rangle=|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$,

$$
\boldsymbol{\rho}_{b c}=(1 / 4) \operatorname{diag}\left[(1+\eta)^{2},\left(1-\eta^{2}\right),\left(1-\eta^{2}\right),(1-\eta)^{2}\right]
$$

transforms to

$$
\boldsymbol{\rho}_{b c}^{\prime}=(1 / 4) \operatorname{diag}\left[(1+\eta)^{2},\left(1-\eta^{2}\right),(1-\eta)^{2},\left(1-\eta^{2}\right)\right] .
$$

Note that the last two entries were interchanged by the not operation when $b=1$.
(c) Show that, after the controlled not operation, the conditional probability

$$
P\left(b^{\prime}=0 \mid c^{\prime}=0\right)=\frac{(1+\eta)^{2}}{2\left(1+\eta^{2}\right)}
$$

so that the bias of $b^{\prime}\left(\right.$ still given $\left.c^{\prime}=0\right)$ is

$$
\eta_{b}^{\prime}=\frac{2 \eta}{1+\eta^{2}}
$$

Answer: First we work out the joint and marginal probabilities

$$
\begin{gathered}
P\left(b^{\prime}=0, c^{\prime}=0\right)=\langle 00| \boldsymbol{\rho}_{b c}^{\prime}|00\rangle=\frac{1}{4}(1+\eta)^{2} \\
P\left(c^{\prime}=0\right)=\langle 00| \boldsymbol{\rho}_{b c}^{\prime}|00\rangle+\langle 10| \boldsymbol{\rho}_{b c}^{\prime}|10\rangle=\frac{1}{2}\left(1+\eta^{2}\right)
\end{gathered}
$$

The we evaluate the conditional probability

$$
P\left(b^{\prime}=0 \mid c^{\prime}=0\right)=\frac{P\left(b^{\prime}=0, c^{\prime}=0\right)}{P\left(c^{\prime}=0\right)}=\frac{(1+\eta)^{2}}{2\left(1+\eta^{2}\right)}
$$

and the bias

$$
\eta_{b}^{\prime}=2 P\left(b^{\prime}=0 \mid c^{\prime}=0\right)-1=\frac{2 \eta}{1+\eta^{2}}
$$

(d) Following the Fredkin gate, the entropy of $a$ is lower than previously. Explain why this is true, and why this does not violate the second law of thermodynamics. By how much is the entropy of $a$ reduced, in the limit of small $\eta$ ?

Answer: Owing to the not gate, the controlled Fredkin gate swaps $a$ and $b$ when $c^{\prime}=0$. Since $\eta_{b}^{\prime} \approx 2 \eta$, this swap doubles the bias of $a$, hence reducing the entropy of $a$. This does not violate the second law because in that case, the entropy of $b$ increases to the same degree that the entropy of $a$ decreases. Since $c^{\prime}=0$ with probability $1 / 2$ (to lowest order), then the average increase in $\eta_{a}$ is $\eta_{a}^{\prime}=3 \eta_{a} / 2$, and the entropy drops by $(9-4) \eta^{2} / 8=5 \eta^{2} / 8$.

This technique for enhancing the bias of a spin is known as "Algorithmic Cooling" and was introduced by Fernandez, Lloyd, Mor and Roychowdhury in 2004.
4. (40 points) Let $\boldsymbol{\rho}$ be the density operator for a quantum system, and let $\left\{P_{i}\right\}$ be a complete set of orthogonal projectors. Define

$$
\boldsymbol{\rho}^{\prime}=\sum_{i} P_{i} \boldsymbol{\rho} P_{i} .
$$

(a) Explain how $\boldsymbol{\rho}^{\prime}$ relates to a projective measurement.

Answer: The density operator $\boldsymbol{\rho}^{\prime}$ is the quantum state following a projective measurement in which we remain unaware of the measurement outcome. We know the quantum state is an eigenstate of $P_{i}$ with probability $\langle i| P_{i}|i\rangle$, but we do not know the value of $i$.
(b) Show that $S\left(\boldsymbol{\rho}^{\prime}\right)=-\operatorname{Tr} \boldsymbol{\rho} \log \boldsymbol{\rho}^{\prime}$ (be careful to distinguish $\boldsymbol{\rho}$ vs. $\boldsymbol{\rho}^{\prime}$ ). What can this expression for $S\left(\boldsymbol{\rho}^{\prime}\right)$ tell us about the change in entropy following a projective measurement?

Answer: We will evaluate the trace using the basis set projector eigenstates $\{|i\rangle\}$.
Note that

$$
\log \boldsymbol{\rho}^{\prime}=\sum_{i} P_{i} \log \rho_{i}^{\prime}, \quad \rho_{i}^{\prime}=\langle i| \boldsymbol{\rho}|i\rangle, \quad P_{i} \log \boldsymbol{\rho}^{\prime}|i\rangle=\log \boldsymbol{\rho}^{\prime}|i\rangle
$$

Expanding the operators and invoking orthogonality,

$$
\begin{aligned}
S\left(\boldsymbol{\rho}^{\prime}\right) & =-\sum_{i}\langle i|\left(\sum_{j} P_{j} \boldsymbol{\rho} P_{j} \sum_{k} P_{k} \log \boldsymbol{\rho}^{\prime}\right)|i\rangle \\
& =-\sum_{i}\langle i|\left(\boldsymbol{\rho} P_{i} \log \boldsymbol{\rho}^{\prime}\right)|i\rangle \\
& =-\sum_{i}\langle i| \boldsymbol{\rho} \log \boldsymbol{\rho}^{\prime}|i\rangle=-\operatorname{Tr} \boldsymbol{\rho} \log \boldsymbol{\rho}^{\prime} .
\end{aligned}
$$

Recall the relative entropy is non-negative,

$$
D\left(\boldsymbol{\rho}^{\prime} \| \boldsymbol{\rho}\right)=-\operatorname{Tr} \boldsymbol{\rho} \log \boldsymbol{\rho}^{\prime}+\operatorname{Tr} \boldsymbol{\rho} \log \boldsymbol{\rho}=S\left(\boldsymbol{\rho}^{\prime}\right)-S(\boldsymbol{\rho}) \geq 0
$$

Hence a projective measurement increases the entropy.

