
NAME: SOLUTIONS

33-658 QCQI Final Exam Dec. 8, 2021

1. (70 points)

Consider a pair of qubits in the composite Hilbert space HQM . We name the first qubit Q (the

“quantum system”) and the second M (the “measuring device”). The measuring device has a

ready state |b = 0〉 a complementary state |b = 1〉. The measuring qubit will itself be measured

in the basis |±〉 = (|0〉 ± |1〉)/
√
2. We define a generalized measurement

U : |ψ〉 ⊗ |b〉 →M+|ψ〉 ⊗ |+〉+ (−1)bM−|ψ〉 ⊗ |−〉

where the measurement operators

M+ =
1√
2





1 0

0 1



 =
1√
2
1, M− =

1√
2





1 0

0 −1



 =
1√
2
σ3.

(a) Show that U is unitary.

Answer: We must show preservation of inner products. Define |A〉 = U |ψ〉|b〉 and

〈B| = 〈b′|〈φ|U †, and note that

M †
+M+ =M †

−M− =
1

2
1.

The inner product

C = 〈B|A〉 = 〈φ|M †
+M+|ψ〉+ 〈φ|M †

−M−|ψ〉 =
1

2
〈φ|ψ〉+ 1

2
(−1)b+b′〈φ|ψ〉

vanishes unless b = b′, in which case C = 〈φ|ψ〉. Hence inner products are preserved.

(b) Measuring M = m in the {|m = ±〉} basis leaves Q in the state Mm|ψ〉, up to normalization.

According to the Born rule, the probability of measurement outcome m is

P (m) = 〈0|〈ψ|U † (IQ ⊗ |m〉〈m|)U |ψ〉|0〉.

Evaluate P (+) and the resulting normalized state |ψ′〉.

Answer: We have

P (+) = 〈0|〈ψ|U † (IQ ⊗ |+〉〈+|) U |ψ〉|0〉

= 〈0|〈ψ|M †
+M+|ψ〉|0〉 = |M+|ψ〉|2 =

1

2



The normalized state is simply |ψ′〉 =M+|ψ〉/
√

P (+) = |ψ〉.

(c) Immediately following the initial measurement that resulted in M = m, qubit M is reset to

|0〉 without disturbing qubit Q. A second measurement is performed resulting in outcome m′.

Evaluate the conditional probability P (m′ = −|m = +).

Answer: The conditional probability

P (m′ = −|m = +) =
|M−M+|ψ〉|2

P (+)
=

1

2

Since the measurement states are not orthogonal, the measurement outcomes are not

exclusive.

(d) Consider the initial pure state density operator ρQ = |ψ〉〈ψ|. The state is measured, as

described above, but the measurement outcome is not reported. The new state ρ′Q = E(ρQ) is

given by a mapping of operators. Express this mapping in terms of the operators M±.

Answer: The mapping

E(ρQ) =
∑

m

MmρQM
†
m

yields the correct states with the correct probabilities. That is, the set {M±} are the

Kraus operators for the mapping.



2. (30 points) Replace the question marks in the following circuit equivalence diagram.

i

j

X

=

i

j

?

??

Answer: Define the cnot gate Cij|x〉|y〉 = |x〉|x⊕ y〉 where addition is taken mod 2.

Then CijXi|x〉|y〉 = |x⊕ 1〉|x⊕ 1⊕ y〉 = XiXjCij|x〉|y〉. Thus each gate ? and ?? is

X.



3. (60 points) Consider the circuit below. Each qubit is a spin-1/2 particle in magnetic field at

temperature T , with the same initial density operators ρ. That is, the initial state is a tensor

product of three mixed state density operators. The operations are: controlled not (b is the

control for target c); logical not on c; a Fredkin gate (controlled swap) that swaps qubits a and b

if c = 1.

ρa

ρb

ρc X

(a) Consider spin a. Its density operator can be written

ρa =
1

2





1 + η 0

0 1− η





Calculate the thermodynamic entropy Sθ(ρ) as a function of the bias η. How does this vary for

small η?

answer: Summing over eigenvalues of ρ, and setting kB = 1,

Sθ = −
∑

k

ρkk ln ρkk = − 1

2
(1 + η) ln

(

1

2
(1 + η)

)

− 1

2
(1− η) ln

(

1

2
(1− η)

)

.

For small η this varies as S = ln 2− η2/2 + . . . .

(b) Determine the density operator ρ′
bc following the controlled not operation. i.e. trace out, or

simply disregard, spin a.

Answer: First, note the product (1 + η)(1− η) = 1− η2. Expressing the density

operator as a matrix in the basis as {|bc〉 = |00〉, |01〉, |10〉, |11〉},

ρbc = (1/4) diag[(1 + η)2, (1− η2), (1− η2), (1− η)2]



transforms to

ρ′
bc = (1/4) diag[(1 + η)2, (1− η2), (1− η)2, (1− η2)].

Note that the last two entries were interchanged by the not operation when b = 1.

(c) Show that, after the controlled not operation, the conditional probability

P (b′ = 0|c′ = 0) =
(1 + η)2

2(1 + η2)

so that the bias of b′ (still given c′ = 0) is

η′b =
2η

1 + η2
.

Answer: First we work out the joint and marginal probabilities

P (b′ = 0, c′ = 0) = 〈00|ρ′
bc|00〉 =

1

4
(1 + η)2,

P (c′ = 0) = 〈00|ρ′
bc|00〉+ 〈10|ρ′

bc|10〉 =
1

2
(1 + η2),

The we evaluate the conditional probability

P (b′ = 0|c′ = 0) =
P (b′ = 0, c′ = 0)

P (c′ = 0)
=

(1 + η)2

2(1 + η2)

and the bias

η′b = 2P (b′ = 0|c′ = 0)− 1 =
2η

1 + η2
.

(d) Following the Fredkin gate, the entropy of a is lower than previously. Explain why this is

true, and why this does not violate the second law of thermodynamics. By how much is the

entropy of a reduced, in the limit of small η?

Answer: Owing to the not gate, the controlled Fredkin gate swaps a and b when

c′ = 0. Since η′b ≈ 2η, this swap doubles the bias of a, hence reducing the entropy of

a. This does not violate the second law because in that case, the entropy of b

increases to the same degree that the entropy of a decreases. Since c′ = 0 with

probability 1/2 (to lowest order), then the average increase in ηa is η′a = 3ηa/2, and

the entropy drops by (9− 4)η2/8 = 5η2/8.

This technique for enhancing the bias of a spin is known as “Algorithmic Cooling”

and was introduced by Fernandez, Lloyd, Mor and Roychowdhury in 2004.



4. (40 points) Let ρ be the density operator for a quantum system, and let {Pi} be a complete set

of orthogonal projectors. Define

ρ′ =
∑

i

PiρPi.

(a) Explain how ρ′ relates to a projective measurement.

Answer: The density operator ρ′ is the quantum state following a projective

measurement in which we remain unaware of the measurement outcome. We know

the quantum state is an eigenstate of Pi with probability 〈i|Pi|i〉, but we do not know

the value of i.

(b) Show that S(ρ′) = −Tr ρ logρ′ (be careful to distinguish ρ vs. ρ′). What can this expression

for S(ρ′) tell us about the change in entropy following a projective measurement?

Answer: We will evaluate the trace using the basis set projector eigenstates {|i〉}.

Note that

logρ′ =
∑

i

Pi log ρ
′
i, ρ′i = 〈i|ρ|i〉, Pi logρ

′|i〉 = logρ′|i〉.

Expanding the operators and invoking orthogonality,

S(ρ′) = −
∑

i

〈i|
(

∑

j

PjρPj

∑

k

Pk logρ
′

)

|i〉

= −
∑

i

〈i| (ρ Pi logρ
′) |i〉

= −
∑

i

〈i|ρ logρ′|i〉 = −Tr ρ logρ′.

Recall the relative entropy is non-negative,

D(ρ′||ρ) = −Tr ρ logρ′ + Tr ρ logρ = S(ρ′)− S(ρ) ≥ 0.

Hence a projective measurement increases the entropy.


