
NAME: SOLUTIONS

33-658 Quantum I Final Exam December 2022

This is a take-home exam. You may use any resources (book, notes, WWW, etc.) that you wish

other than discussing with another person. When you are finished please scan to a clear

black&white PDF and upload to Canvas.

0. (a) Have you completed your FCE, or will you do so? Yes (1 point)/No (0 points)

(b) Did you add comments to the FCE, or will you do so? Yes (2 points)/No (0 points)

1. (15 points) A random variable Y depends conditionally on the random variable X, and Z

depends on Y but not on X. Hence the joint probability factors as pXY Z(x, y, z) =

pX(x)pXY (y|x)pY Z(z|y). Prove the bound on classical mutual information, I(X;Y ) ≥ I(X;Z).

Answer: Apply the chain rule to the mutual information between X and the joint

value of (Y, Z),

I(X; (Y, Z)) = I(X;Z) + I(X;Y |Z) = I(X;Y ) + I(X;Z|Y )

Since I(X;Z|Y ) = 0, and I(X;Y |Z) ≥ 0 then I(X;Y ) ≥ I(X;Z). The shows that

the information that measurements Y provide about the property X cannot be

increased by further post-processing that converts Y into Z. This is the data

processing inequality; no transformation of data Y can increase the information that

Z contains regarding X.



2. (15 points) Given pure states ρ1 = |ψ〉〈ψ| = (1 + ~a1 · ~σ)/2 and ρ2 = |φ〉〈φ| = (1 + ~a2 · ~σ)/2,

with 〈ψ|φ〉 = cos (θ), show that ~a1 · ~a2 = cos (2θ).

Answer This is adapted from Schumacher & Westmoreland problem #8.1. From

exercise 8.31 we have Tr ρ1ρ2 = (1 + ~a1 · ~a2)/2 as can be proved using properties of

Pauli matrices. Now consider

Tr ρ1ρ2 =
∑

k

〈k|ψ〉〈ψ|φ〉〈φ|k〉

=
∑

k

〈ψ|φ〉〈φ|k〉〈k|ψ〉

= |〈φ|ψ〉|2

=
1

2
(1 + cos (2θ)

3. Consider the Hamiltonian H = EN with N = a†a the number operator. Such a Hamiltonian

has the spectrum En = n E with n taking non-negative integer values. It is equivalent to a

harmonic oscillator, neglecting the zero point energy.

(a) (20 points) Determine the equilibrium state ω and its free energy.

Answer: The equilibrium state density operator

ω =
1

Z
e−H/kBT

where the partition function normalizes the equilibrium state density operator with

the value

Z = Tr e−H/kBT =
∞
∑

n=0

e−nE/kBT =
1

1− e−E/kBT
.

We get the free energy from the partition function as

F (ωHT ) = −kBT lnZ = kBT ln (1− e−E/kBT ).

(b) (20 points) Calculate its thermodynamic energy E and entropy S.

Answer: The energy

E = Tr ωH =
1

Z

∑

n

n E e−nE/kBT



This can be evaluated as

E = −E
Z

∂

∂(E/kBT )
Z =

Ee−E/kBT

1− e−E/kBT
=

E
eE/kBT − 1

.

Entropy can be calculated from S = −kBTr ω lnω, from S = −∂F/∂T , or simply as

S = (E − F )/T =
E

T (eE/kBT − 1)
− k ln (1− e−E/kBT )

4. A Toffoli gate is a doubly-controlled-not gate that takes the “logical and” of the two control bit

inputs, x and y, as the control of the target bit t. The final target bit is replaced by t⊕xy. I wish

to create a triply-controlled-not to replace the target bit by t⊕ xyz by first storing the product of

x and y in an ancillary qubit a, then repeating the process with z and a controlling the target t.

The circuit on the left is my attempt to mimic the triply-controlled-not gate shown on the right.

|x〉

|y〉

|z〉

|a = 0〉

|t〉

?
=

|x〉

|y〉

|z〉

|t〉

(a) (15 points) Calculate the final state of each circuit assuming the inputs, x, y, z, and t, take

binary (0/1) values.

Answer: The mimic circuit results in the final state

|x〉|y〉|z〉|xy〉|t⊕ xy〉

while the desired circuit yields

|x〉|y〉|z〉|t⊕ xy〉.



(b) (15 points) Calculate the final states again, replacing the bit value x with the superposition

state |ψx〉 = α|0〉+ β|1〉.

Answer: The mimic circuit results in the final state

α|0〉|y〉|z〉|0〉|t〉+ β|1〉|y〉|z〉|y〉|t⊕ yz〉

while the desired circuit yields

α|0〉|y〉|z〉|t〉+ β|1〉|y〉|z〉|t⊕ yz〉

Note that the target bit has become entangled with the ancillary bit.

(c) (20 points) Imagine that after executing my circuit I measure the ancillary qubit and obtain

a = 1. What is the conditional state following the measurement? Explain why this state differs

from the proper output of the triply-controlled-not gate.

Answer: Since a = 1, we may assert that x = 1 and y = 1 even though x was (and y

could have been) in a superposition state. The conditional state of the mimic circuit is

|1〉|1〉|z〉|1〉|t⊕ z〉,

which lacks dependence on the x and y states.

(d) (20 points) A single additional operation can repair my circuit. What is it, and why does it

work?

Answer: The following page shows a working circuit that “uncomputes” the

ancillary bit and thereby removes its entanglement with the target bit. This is the

reason that many quantum circuits appear as mirror images containing superficially

unnecessary final operations.



|x〉

|y〉

|z〉

|a = 0〉

|t〉

=

|x〉

|y〉

|z〉
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5. In Schroedinger’s cat paradox, a process is described that places a cat into a superposition

state of alive and dead, |ψ〉 = (|a〉+ |d〉)/
√
2. The cat and the entire aparatus is hidden inside a

box so that we cannot see it.

a) (15 points) Write down the density matrix for this state, ρ.

Answer:

ρi =
1

2





1 1

1 1





b) (15 points) The cat interacts with its environment, generating random phase flips. Derive and

Lindblad’s differential equation for this process. What is the final steady state?

Answer: This the phase flipping example that we worked out in class. The Lindblad

operator is L = ΛZ yielding the Lindblad equation

d

dt
ρ = Λ2 (ZρZ − ρ)

In components, we find that the state populations ρaa and ρdd are constants, while

the coherences ρad and ρda vanish exponentially at the rate |Λ|2. The final state is

ρf =
1

2





1 0

0 1



 .

c) (15 points) Evaluate the initial and final state entropies.

Answer: The initial state eigenvalues are {0, 1} with entropy S(ρi) = − log 1− 0

= 0. The final state eigenvalues are {1/2, 1/2} with entropy S(ρf ) = −(1/2) log (1/2)

− (1/2) log (1/2) = log 2.

d) (15 points) What physical interpretation would you assign to the final state? What would the

state be if you opened the box and looked inside?

Answer: This is a mixed state in which the cat has a 50-50% chance of being either

alive or dead, but not both. The probabilities reflect our lack of knowledge of the

final state. If we opened the box we would observe one state or the other.


