
NAME: SOLUTIONS

33-658 QCQI Midterm Exam Oct. 12, 2023

This exam has two questions each with multiple parts, some of which can be solved

independently of others. When asked to show (or to evaluate, calculate, etc.), please show your

work in the space provided. When a question is posed, answer in words with one or two clear and

concise sentences explaining your answer. Use the back of your paper as needed. Here are some

useful formulas:

Pauli operators and their matrices:

X = σx =

0 1

1 0

 , Y = σy =

0 −i
i 0

 , Z = σz =

1 0

0 −1



cos2 θ + sin2 θ = 1, cos2 θ = (1 + cos(2θ))/2, sin2 θ = (1− cos(2θ))/2

Beam splitter actions:

|a〉 → 1√
2

(|c〉+ |d〉) , |b〉 → 1√
2

(−|c〉+ |d〉)

1. Exercises with density operators.

Let ψ̂ = (ψx, ψy, ψz) be a unit vector. Recall that ρψ = (1 + ψ̂ · ~σ)/2 is a pure state density

operator representing the state |ψ〉 corresponding to spin up in the direction ψ̂, and similarly for

φ̂. Define Sψ̂ ≡ ψ̂ · S.

(a) Show that Sψ̂ρψ = ρψ.

Answer: The simplest answer is to express ρψ = |ψ〉〈ψ|, then(
ψ̂ · S

)
ρψ =

(
ψ̂ · S|ψ〉

)
〈ψ| = (+1 |ψ〉) 〈ψ| = ρψ.

Alternatively, one can express

ρψ =
1

2
(1 + ψxX + ψyY + ψzZ)

and then use identities such as X2 = 1 and XY = −Y X to simplify the product of(
ψ̂ · S

)
with ρψ.



(b) Evaluate Tr ρψρφ in terms of the components of ψ̂ and φ̂, and also in terms of the angle θ

between ψ̂ and φ̂.

Answer: Expanding ρψρφ as

1

2
(1 + ψxX + ψyY + ψzZ)

1

2
(1 + φxX + φyY + φzZ)

yields sixteen terms. Diagonal terms involve 12 = X2 = Y 2 = Z2 = 1, and Tr 1 = 2.

Off diagonal terms such as 1X are traceless, while terms such as XY = −Y X cancel.

Hence

Tr ρψρφ =
1

2
(1 + ψxφx + ψyφy + ψzφz) =

1

2

(
1 + ψ̂ · φ̂

)
=

1

2
(1 + cos θ)

(c) Evaluate the expectation value of Sψ̂ in the state ρφ.

Answer:

〈Sψ̂〉φ = Tr ρφSψ̂

= Tr

[
1

2

(
1 + φ̂ · ~σ

)
ψ̂ · ~σ

]
The calculation is now nearly identical to (b).

〈Sψ̂〉φ̂ = φxψx + φyψy + φzψz = φ̂ · ψ̂ = cos θ

(d) A pure state density operator evolves in time as

ρ(t) = U(t)ρ(0)U †(t).

How would you expect a mixed state density operator to evolve? How would Tr ρψρφ evolve?

Answer: Since a mixed state density operator is just a linear superposition of pure

state operators, and each term in the superposition evolves through conjugation by

U , then so does the mixed state density operator. A product of density operators

evolves as U(t)ρψU
†(t) U(t)ρφU

†(t). The inner U †U = 1. Cyclic permutation

invariance of the trace then shows that Tr ρψρφ is time-indepndent.



2. Consider the Mach-Zehnder interferometer shown below. An atom is placed on the arm e→ e′.

Each letter (including primes) represents a possible state for a photon as it traverses the device.

The atom may be in its ground state 0 or its excited state 1. We will model the atom-photon

interaction as

|e〉|0〉 → |e′〉|1〉.

a

b

c

d

e e′

f

f′

g

h
0/1

1

(a) What is the dimension of the Hilbert space for the composite photon/atom system?

Answer: The dimension is 20, 10 for the photon times 2 for the atom.

(b) Assume a photon enters in state |a〉 while the atom is in its ground state |0〉. Determine the

final state of the system |Ψ〉 as the photon exits the interferometer in arm g or h.

Answer: The unitary evolution is

|0〉|0〉 → 1√
2

(|c〉|0〉+ |d〉|0〉)

→ 1√
2

(|e〉|0〉+ |f〉|0〉)

→ 1√
2

(|e′〉|1〉+ |f ′〉|0〉)

→ 1
2
{(|g〉|1〉+ |h〉|1〉) + (−|g〉|0〉+ |h〉|0〉)} ≡ |Ψ〉.



(c) Calculate the conditional probability that the atom is in its excited state given that the

photon exits through arm g.

Answer: We have P (1|g) = P (1, g)/P (g). Working out terms yields

P (1, g) = |〈g1|Ψ〉|2 = 1/4 = P (0, g), P (g) = P (0, g) + P (1, g) = 1/2,

hence P (1|g) = 1/2.

(d) What additional condition must be imposed on our model of the atom-photon interaction to

ensure unitarity?

Answer: We require that orthogonal states evolve to orthogonal states, hence we

require that

|e〉|1〉 → |e′〉|0〉.

(e) Consider a new atom-photon interaction model in which the atom in its ground state

becomes excited, but it absorbs the photon in the process. For clarity, we will denote the state of

“no photon” by |n〉. If the atom is in its excited state it remains excited and the photon passes

through unaffected. Specifically,

|e〉|0〉 → |n〉|1〉, |e〉|1〉 → |e′〉|1〉.

Repeat your calculation of part (b) for the final state according to this new model.

Answer:

|0〉|0〉 → 1√
2

(|n〉|1〉+ |f ′〉|0〉)

→ 1√
2
|n〉|1〉+ 1

2
(−|g〉|0〉+ |h〉|0〉) ≡ |Ψ〉.

(f) Repeat your calculation of part (c) under the new model. How (if at all) would your result

change if the initial state of the atom were unknown?

Answer: Now the atom is excited only in the case the photon is absorbed, so it

cannot exit in arm g, and hence

P (1, g) = |〈g1|Ψ〉|2 = 0.



If the atom was initially excited then we recover the case of an empty (no atom)

interferometer. In this case, the final state is |Ψ〉 = |h〉|1〉, and again the photon does

not exit through arm g.

Since we know that the atom is not excited if it exits through arm g, regardless of its

initial state, then detecting a photon in arm g proves that the atom is in its ground

state, regardless of its initial state. This constitutes an interaction-free measurement

revealing the atom to be in its ground state even though the photon did not touch the

atom. This process was first described by Elitzur and Vaidman in 1993.


