33-658 Quantum Computing and Quantum Information Homework 1

1. The set $\left\{P_{i}: i=1, \ldots, N\right\}$ represents the probabilities of N possible events. Prove that the entropy is maximized if all probabilities take the common value $P_{i}=1 / N$. Hint: Use a Lagrange multiplier to enforce the constraint $\sum_{i} P_{i}=1$.
2. Apply Jensen's inequality to prove that the mutual information of two distributions $P(X)$ and $P(Y)$ is necessarily non-negative.
3. The quote "To be, or not to be, that is the question." has 42 characters (not counting the quotation marks), as shown in this table, along with their frequencies f. | character | \checkmark | t | o | e | s | n | i | h | b | , | u | r | q | a | T | . | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| frequency | 9 | 6 | 5 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 42 |

(a) How many bits would the quote occupy in a plain text computer file?
(b) Calculate the entropy in units of bits per character, and the total information content of the full quote.
(c) Create a Shannon code (see https://en.wikipedia.org/wiki/Shannon-Fano_coding) for the quote and determine how many bits are required to store the compressed quote using this code.
4. The unit vector \mathbf{n} with polar angle θ and azimuthal angle φ has Cartesian coordinates $(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$. Let $S_{x}=(\hbar / 2) \sigma_{x}, S_{y}=(\hbar / 2) \sigma_{y}$, and $S_{z}=(\hbar / 2) \sigma_{z}$ be the x, y, and z components of the spin operator \mathbf{S}, with σ_{k} the $k^{\text {th }}$ Pauli matrix (see SW Eq. 3.35).
(a) Verify that

$$
S_{\mathbf{n}} \equiv \mathbf{n} \cdot \mathbf{S}=\frac{\hbar}{2}\left(\begin{array}{cc}
\cos \theta & \sin \theta e^{-i \varphi} \\
\sin \theta e^{i \varphi} & -\cos \theta
\end{array}\right)
$$

(b) Evaluate the trace and the determinant of $S_{\mathbf{n}}$.
(c) Show that the vectors

$$
\begin{aligned}
\left|\mathbf{n}^{+}\right\rangle & =\cos \frac{\theta}{2} e^{-i \varphi / 2}\left|z^{+}\right\rangle+\sin \frac{\theta}{2} e^{i \varphi / 2}\left|z^{-}\right\rangle \\
\left|\mathbf{n}^{-}\right\rangle & =-\sin \frac{\theta}{2} e^{-i \varphi / 2}\left|z^{+}\right\rangle+\cos \frac{\theta}{2} e^{i \varphi / 2}\left|z^{-}\right\rangle .
\end{aligned}
$$

are eigenvectors of $S_{\mathbf{n}}$ and determine their eigenvalues.

