33-658 Quantum Computing and Quantum Information Homework 2

1. A two-dimensional Hilbert space has basis elements $\{|0\rangle,|1\rangle\}$.
(i) Express the following operators as matrices in that basis, and show that these matrices are Hermitian.

$$
\begin{aligned}
X & \equiv|0\rangle\langle 1|+|1\rangle\langle 0| \\
Y & \equiv-i|0\rangle\langle 1|+i|1\rangle\langle 0| \\
Z & \equiv|0\rangle\langle 0|-|1\rangle\langle 1|
\end{aligned}
$$

(ii) Evaluate X^{2}, Y^{2}, and Z^{2}.
(iii) Evaluate the commutator $[X, Y]$.
(iv) Define the state $|+\rangle \equiv(|0\rangle+|1\rangle) / \sqrt{2}$. Which of the operators X, Y, and Z have definite values in this state, and which do do not?
2. Consider the density operator for the pure state $|\psi\rangle$, namely $\rho_{\psi}=|\psi\rangle\langle\psi|$. Show that $\operatorname{Tr} \rho_{\psi}^{2}=1$.
3. An operator P is positive if $\langle\psi| P|\psi\rangle \geq 0$ for all $|\psi\rangle \in \mathcal{H}$. Show that
(i) $|\varphi\rangle\langle\varphi|$ is positive for any $|\varphi\rangle \in \mathcal{H}$.
(ii) If P is positive, and π is a projection operator, then $\pi P \pi$ is also positive.
(iii) If P is positive and $|\psi\rangle$ is normalized, then $\langle\psi| P|\psi\rangle \leq \operatorname{Tr} P$.
4. The exponential of an operator is defined by its power series expansion, e.g.

$$
\exp \mathbf{A}=1+\mathbf{A}+\mathbf{A}^{2} / 2+\cdots
$$

Let $\hat{\mathbf{n}}$ be a three-dimensional unit vector, and let $\boldsymbol{\sigma}$ be the vector of Pauli matrices ($\sigma_{x}, \sigma_{y}, \sigma_{z}$). Evaluate

$$
e^{i(\theta / 2) \hat{\mathbf{n}} \cdot \boldsymbol{\sigma}} .
$$

5. The only transformation of the classical bits 0 and 1 is logical not, " \neg ".
(i) What is the most general matrix representation of logical not for a qubit?
(ii) In quantum computing applications we require that $|+\rangle \equiv(|0\rangle+|1\rangle) / \sqrt{2}$ be an eigenstate of \neg with eigenvalue +1 . What is the form of the matrix X representing \neg subject to that condition?
(iii) What is the most general transformation of a qubit that can be achieved by quantum mechanical time evolution? Give an explicit matrix in the $\{|0\rangle,|1\rangle\}$ basis.
