33-658 Quantum Computing and Quantum Information Homework 4

1. For a noninteracting composite system of independent subsystems A and B, where $H_{A B}=H_{A}+H_{B}$, prove that the time evolution operator factorizes,

$$
T(t)=e^{-i H_{A B} t / \hbar}=e^{-i H_{A} t / \hbar} e^{-i H_{B} t / \hbar}
$$

Is this true even if $H_{A}=S_{x}$ and $H_{B}=S_{y}$? Explain.
2. Solve Shumacher \& Westmoreland problem 6.6.

Consider the GHZ state $|\Psi\rangle=(1 / \sqrt{2})(|000\rangle-|111\rangle)$.
(a) Suppose Alice makes a Z measurement on her qubit. Show that the qubits of Bob and

Charlie are in a product state, regardless of the measurement outcome.
(b) Suppose Alice makes an X measurement on her qubit. Show that the qubits of Bob and

Charlie are in an entangled state, regardless of the measurement outcome.
3. Solve Shumacher \& Westmoreland problem 6.9.
(a) Show that measurements of the Y components of $\left|\Psi_{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$ yields opposite results.
(b) Does there exist an "anti-singlet" state of two qubits for which measurements of parallel spin components always yield identical results? If so, write down the state vector. If not, give a proof that no state, product or entangled, can do this.
4. Bell measurement experiment with quantum gates.
(a) Express the H and CX (C-NOT) gates as matrices of the appropriate dimension, and verify that $H^{2}=1$ and $C X^{2}=1$.
(b) Analyze the behavior of the circuit in the figure below. Determine the quantum state at each time t, for every combination of $x, y \in\{0,1\}$. Whenever the state is a product state, express it in product form. How are the values of a and b related to x and y ?

Figure 1: Bell state circuit.
(c) Program the case $x=0, y=1$ using IBM Composer and use the "Inspector" to check the quantum state at time t_{3}. Print a copy of a working circuit, then run it 1024 times on IBM-Q and print out the resulting histogram of (a, b) values.

