33-658 Quantum Computing and Quantum Information Homework 5

1. Dense coding.

The Bell states defined by

$$
\begin{array}{ll}
\left|B_{00}\right\rangle=(|00\rangle+|11\rangle) / \sqrt{2}, & \left|B_{01}\right\rangle=(|01\rangle+|10\rangle) / \sqrt{2} \\
\left|B_{10}\right\rangle=(|00\rangle-|11\rangle) / \sqrt{2}, & \left|B_{11}\right\rangle=(|01\rangle-|10\rangle) / \sqrt{2}
\end{array}
$$

form an orthonormal basis of fully entangled states on the tensor product $\mathcal{H}_{a} \otimes \mathcal{H}_{b}$ of two two-dimensional Hilbert spaces, where each space has an orthonormal basis $\{|0\rangle,|1\rangle\}$. Note that

$$
\left|B_{x y}\right\rangle=\frac{1}{\sqrt{2}}\left(|0 y\rangle+(-1)^{x}|1 \tilde{y}\rangle\right)
$$

with $\tilde{y}=\neg y$.
(a) Find unitary operations of the form $U_{a} \otimes I_{b}$ that map $\left|B_{00}\right\rangle$ to $\left|B_{01}\right\rangle,\left|B_{10}\right\rangle$, and $\left|B_{11}\right\rangle$. Do you recognize the U_{a} operators?
(b) Alice and Bob share a Bell state $B_{x y}$ but they do not know the values of x or y. Two bits of information are required to specify $x y$. How many bits of information concerning $x y$ are obtained if Alice measures the value of her qubit a ? How many bits of information are obtained if Bob also measures his qubit b and shares the result with Alice?
(c) Now let Alice and Bob each have two bits, $|a\rangle$ and $\left|a^{\prime}\right\rangle$, and $|b\rangle$ and $|c\rangle$, respectively, as shown in the figure. Assume that $a, a^{\prime} \in\{0,1\}$. The state at time 2 is a product state, $\left|\Psi_{2}\right\rangle=|a\rangle\left|a^{\prime}\right\rangle\left|B_{00}\right\rangle$. Bob passes bit b to Alice, who acts on it between times 3 and 5 , then returns it to Bob. What is the state at time 6 ?

(d) The figure claims that the final state at time 8 is $\left|a a^{\prime} a a^{\prime}\right\rangle$. Explain why this is true. Notice that two bits of classical information (a and a^{\prime}) have been shared by sharing a single qubit.
(e) The final state at time 8 contains two copies each of bits a and a^{\prime}. Why does this not violate the no-cloning theorem?
2. Schumacher \& Westmoreland problem \#7.3 "Preparation machines"
3. Schumacher \& Westmoreland problem \#7.5 Teleportation.

