33-658 Quantum Computing and Quantum Information Homework 8

1. (i) prove $\mathbf{C}_{i j}=\tilde{\mathbf{n}}_{i}+\mathbf{n}_{i} \mathbf{X}_{j}$. (ii) Apply algebraic manipulations (i.e. do not use matrix arithmetic) to prove: $\mathbf{S}_{i j}=(1 / 2)\left(\mathbf{1}+\mathbf{X}_{i} \mathbf{X}_{j}+\mathbf{Y}_{i} \mathbf{Y}_{j}+\mathbf{Z}_{i} \mathbf{Z}_{j}\right)=(1 / 2)\left(1+\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}\right)$.
2. Prove the identities

and

3. In the Bernstein-Vazirani problem we are told that function $f(x)=a \cdot x$, where a and x are n-bit integers and the dot product

$$
a \cdot x=a_{0} x_{0} \oplus a_{1} x_{1} \oplus \cdots \oplus a_{n-1} x_{n-1}
$$

is the modulo 2 sum of products of bits. Suppose that we are given a quantum circuit that evaluates $f(x)$ for any input x but that we do not know the value of a. To determine a on a classical computer would require n evaluations of f. This exercise, which is based on the analysis in Mermin, shows how to determine a with a single evaluation of f on a quantum computer.
(i) Let \mathbf{U}_{f} be an f-controlled unitary transformation on the tensor product of the n-bit input register initially in state $|x\rangle_{n}$ and a 1-bit output register initially in state $|y\rangle_{1}=\mathbf{H X}|0\rangle=(|0\rangle-|1\rangle) / \sqrt{2}$. Show that

$$
\mathbf{U}_{f}|x\rangle_{n}|y\rangle_{1}=(-1)^{f(x)}|x\rangle_{n}|y\rangle_{1}
$$

(ii) Show that

$$
\mathbf{H}^{\otimes n}|x\rangle_{n}=\frac{1}{2^{n / 2}} \sum_{y=0}^{2^{n}-1}(-1)^{x \cdot y}|y\rangle_{n}
$$

(iii) Show that

$$
\left(\mathbf{H}^{\otimes n} \otimes \mathbf{H}\right) \mathbf{U}_{f}\left(\mathbf{H}^{\otimes n} \otimes \mathbf{H}\right)|0\rangle_{n}|1\rangle_{1}=|a\rangle_{n}|1\rangle_{1} .
$$

Note that the unknown value of a appears in the input register!

