
33-658 Quantum Computing and Quantum Information Homework 8

1. (i) prove Cij = ñi + niXj. (ii) Apply algebraic manipulations (i.e. do not use matrix

arithmetic) to prove: Sij = (1/2)(1+XiXj +YiYj + ZiZj) = (1/2)(1 + ~σi · ~σj).

Answer:

(i) If ni = 0 then Cij = ñi = 1, as required, while if ni = 1, then Cij acts as a NOT on

j, as required.

(ii) Expressing Cij as in (i), noting the identities nX = Xñ and ñX = Xn, and

invoking an identity for Sij proved in class, we can show

Sij = C01C10C01 = ninj + ñiñj + (XiXj)(niñj + ñinj).

Then, substituting n = (1− Z)/2 and n = (1 + Z)/2 (also shown in class) and

defining Y = iXZ) yields

Sij = (1/2)(1+XiXj +YiYj + ZiZj) = (1/2)(1 + ~σi · ~σj)

where the final equality expresses the definition of the dot product of the vector of

Pauli operators.



2. Prove the identities

Z

=

Z

and

XH

H

H

H

=

X

Answer: The top identity follows because each operation leaves the basis states |00〉,

|01〉, and |10〉 invariant while reversing the sign of |11〉. The bottom identity then

follows because we may apply the top identity to move HXH = Z from the second

qubit to the first, and then identify HZH = H
2
XH

2 = X on the first qubit.



3. In the Bernstein-Vazirani problem we are told that function f(x) = a · x, where a and x are

n-bit integers and the dot product

a · x = a0x0 ⊕ a1x1 ⊕ · · · ⊕ an−1xn−1

is the modulo 2 sum of products of bits. Suppose that we are given a quantum circuit that

evaluates f(x) for any input x but that we do not know the value of a. To determine a on a

classical computer would require n evaluations of f . This exercise, which is based on the analysis

in Mermin, shows how to determine a with a single evaluation of f on a quantum computer.

(i) Let Uf be an f -controlled unitary transformation on the tensor product of the n-bit input

register initially in state |x〉n and a 1-bit output register initially in state

|y〉1 = HX|0〉 = (|0〉 − |1〉)/
√
2. Show that

Uf |x〉n|y〉1 = (−1)f(x)|x〉n|y〉1.

Answer: If f(x) = 0 then Uf acts as the identity. If f(x) = 1 then Uf flips the states

of the second bit. Since |y〉 = (|0〉 − |1〉)/
√
2, flipping the bits reverses the sign of |y〉.

(ii) Show that

H
⊗n|x〉n =

1

2n/2

2n−1∑

y=0

(−1)x·y|y〉n.

Answer: First note that

H|x〉1 =
1√
2
(|0〉+ (−1)x|1〉) = 1√

2

1∑

y=0

(−1)xy|y〉

Now multiplying the sums for an n-bit ket, we obtain the required result where the

dot product

x · y =
∑

j

xjyj.



(iii) Show that

(H⊗n ⊗H)Uf (H
⊗n ⊗H)|0〉n|1〉1 = |a〉n|1〉1.

Note that the unknown value of a appears in the input register!

Answer: Applying the given sequence of operations and inserting the results of parts

(i) and (ii), we obtain

(H⊗n ⊗H)Uf (H
⊗n ⊗H)|0〉n|1〉1 =

1

2n

∑

xy

(−1)f(x)+x·y|y〉n
1√
2
(|0〉 − |1〉)

Now set f(~x) = ~a · ~x and consider the sum over ~x,

∑

x

(−1)(a·x)(−1)(y·x) =
n∏

j=1

1∑

xj=0

(−a)(aj+yj)xj

The sum over xj vanishes unless aj + yj = 0mod2 (i. e.aj = yj) so the product

vanishes unless ~y = ~a, and the sum over y above contains only y = a.


