1. (i) prove $C_{ij} = \tilde{n}_i + n_i X_j$. (ii) Apply algebraic manipulations (i.e. do not use matrix arithmetic) to prove: $S_{ij} = (1/2)(1 + X_i X_j + Y_i Y_j + Z_i Z_j) = (1/2)(1 + \vec{\sigma}_i \cdot \vec{\sigma}_j)$.

Answer:

(i) If $n_i = 0$ then $C_{ij} = \tilde{n}_i = 1$, as required, while if $n_i = 1$, then C_{ij} acts as a NOT on j, as required.

(ii) Expressing C_{ij} as in (i), noting the identities $nX = X\tilde{n}$ and $\tilde{n}X = Xn$, and invoking an identity for S_{ij} proved in class, we can show

$$S_{ij} = C_{01}C_{10}C_{01} = n_i n_j + \tilde{n}_i \tilde{n}_j + (X_i X_j)(n_i \tilde{n}_j + \tilde{n}_i n_j).$$

Then, substituting $n = (1 - Z)/2$ and $n = (1 + Z)/2$ (also shown in class) and defining $Y = iXZ$ yields

$$S_{ij} = (1/2)(1 + X_i X_j + Y_i Y_j + Z_i Z_j) = (1/2)(1 + \vec{\sigma}_i \cdot \vec{\sigma}_j)$$

where the final equality expresses the definition of the dot product of the vector of Pauli operators.
2. Prove the identities

\[Z = Z \]

and

\[HXH = X \]

Answer: The top identity follows because each operation leaves the basis states \(|00\rangle\), \(|01\rangle\), and \(|10\rangle\) invariant while reversing the sign of \(|11\rangle\). The bottom identity then follows because we may apply the top identity to move \(HXH = Z\) from the second qubit to the first, and then identify \(HZH = H^2XH^2 = X\) on the first qubit.
3. In the Bernstein-Vazirani problem we are told that function \(f(x) = a \cdot x \), where \(a \) and \(x \) are \(n \)-bit integers and the dot product

\[
a \cdot x = a_0 x_0 \oplus a_1 x_1 \oplus \cdots \oplus a_{n-1} x_{n-1}
\]

is the modulo 2 sum of products of bits. Suppose that we are given a quantum circuit that evaluates \(f(x) \) for any input \(x \) but that we do not know the value of \(a \). To determine \(a \) on a classical computer would require \(n \) evaluations of \(f \). This exercise, which is based on the analysis in Mermin, shows how to determine \(a \) with a single evaluation of \(f \) on a quantum computer.

(i) Let \(U_f \) be an \(f \)-controlled unitary transformation on the tensor product of the \(n \)-bit input register initially in state \(|x\rangle_n \) and a 1-bit output register initially in state \(|y\rangle_1 = HX|0\rangle = (|0\rangle - |1\rangle)/\sqrt{2} \). Show that

\[
U_f|x\rangle_n|y\rangle_1 = (-1)^{f(x)}|x\rangle_n|y\rangle_1.
\]

Answer: If \(f(x) = 0 \) then \(U_f \) acts as the identity. If \(f(x) = 1 \) then \(U_f \) flips the states of the second bit. Since \(|y\rangle = (|0\rangle - |1\rangle)/\sqrt{2} \), flipping the bits reverses the sign of \(|y\rangle \).

(ii) Show that

\[
H^{\otimes n}|x\rangle_n = \frac{1}{2^{n/2}} \sum_{y=0}^{2^{n-1}} (-1)^{x \cdot y} |y\rangle_n.
\]

Answer: First note that

\[
H|x\rangle_1 = \frac{1}{\sqrt{2}} (|0\rangle + (-1)^x|1\rangle) = \frac{1}{\sqrt{2}} \sum_{y=0}^{1} (-1)^{xy} |y\rangle
\]

Now multiplying the sums for an \(n \)-bit ket, we obtain the required result where the dot product

\[
x \cdot y = \sum_j x_j y_j.
\]
(iii) Show that
\[(\mathbf{H}^\otimes n \otimes \mathbf{H})U_f(\mathbf{H}^\otimes n \otimes \mathbf{H})|0\rangle_n|1\rangle_1 = |a\rangle_n|1\rangle_1.\]

Note that the unknown value of \(a\) appears in the input register!

Answer: Applying the given sequence of operations and inserting the results of parts (i) and (ii), we obtain
\[(\mathbf{H}^\otimes n \otimes \mathbf{H})U_f(\mathbf{H}^\otimes n \otimes \mathbf{H})|0\rangle_n|1\rangle_1 = \frac{1}{2^n} \sum_{xy} (-1)^{f(x)+y} |y\rangle_n \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)\]

Now set \(f(\vec{x}) = \vec{a} \cdot \vec{x}\) and consider the sum over \(\vec{x}\),
\[
\sum_x (-1)^{(\vec{a} \cdot x)} (-1)^{(\vec{y} \cdot x)} = \prod_{j=1}^n \sum_{x_j=0}^{1} (-a)^{(a_j+y_j)x_j}
\]

The sum over \(x_j\) vanishes unless \(a_j + y_j = 0\mod 2\) (i.e. \(a_j = y_j\)) so the product vanishes unless \(\vec{y} = \vec{a}\), and the sum over \(y\) above contains only \(y = a\).