33-658 Quantum Computing and Quantum Information Homework 8

1. (i) prove $\mathbf{C}_{i j}=\tilde{\mathbf{n}}_{i}+\mathbf{n}_{i} \mathbf{X}_{j}$. (ii) Apply algebraic manipulations (i.e. do not use matrix arithmetic) to prove: $\mathbf{S}_{i j}=(1 / 2)\left(\mathbf{1}+\mathbf{X}_{i} \mathbf{X}_{j}+\mathbf{Y}_{i} \mathbf{Y}_{j}+\mathbf{Z}_{i} \mathbf{Z}_{j}\right)=(1 / 2)\left(1+\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}\right)$.

Answer:

(i) If $\mathbf{n}_{i}=0$ then $\mathbf{C}_{i j}=\tilde{\mathbf{n}}_{i}=\mathbf{1}$, as required, while if $\mathbf{n}_{i}=1$, then $\mathbf{C}_{i j}$ acts as a NOT on j, as required.
(ii) Expressing $\mathbf{C}_{i j}$ as in (i), noting the identities $\mathbf{n} \mathbf{X}=\mathbf{X} \tilde{\boldsymbol{n}}$ and $\tilde{\boldsymbol{n}} \mathbf{X}=\mathbf{X n}$, and invoking an identity for $\mathbf{S}_{i j}$ proved in class, we can show

$$
\mathbf{S}_{i j}=\mathbf{C}_{01} \mathbf{C}_{10} \mathbf{C}_{01}=\mathbf{n}_{i} \mathbf{n}_{j}+\tilde{\boldsymbol{n}}_{i} \tilde{\boldsymbol{n}}_{j}+\left(\mathbf{X}_{i} \mathbf{X}_{j}\right)\left(\mathbf{n}_{i} \tilde{\boldsymbol{n}}_{j}+\tilde{\boldsymbol{n}}_{i} \mathbf{n}_{j}\right)
$$

Then, substituting $\mathbf{n}=(1-\mathbf{Z}) / 2$ and $\mathbf{n}=(1+\mathbf{Z}) / 2$ (also shown in class) and defining $\mathbf{Y}=i \mathbf{X Z})$ yields

$$
\mathbf{S}_{i j}=(1 / 2)\left(\mathbf{1}+\mathbf{X}_{i} \mathbf{X}_{j}+\mathbf{Y}_{i} \mathbf{Y}_{j}+\mathbf{Z}_{i} \mathbf{Z}_{j}\right)=(1 / 2)\left(1+\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}\right)
$$

where the final equality expresses the definition of the dot product of the vector of Pauli operators.
2. Prove the identities

and

Answer: The top identity follows because each operation leaves the basis states $|00\rangle$, $|01\rangle$, and $|10\rangle$ invariant while reversing the sign of $|11\rangle$. The bottom identity then follows because we may apply the top identity to move $\mathbf{H X H}=\mathbf{Z}$ from the second qubit to the first, and then identify $\mathbf{H Z H}=\mathbf{H}^{2} \mathbf{X} \mathbf{H}^{2}=\mathbf{X}$ on the first qubit.
3. In the Bernstein-Vazirani problem we are told that function $f(x)=a \cdot x$, where a and x are n-bit integers and the dot product

$$
a \cdot x=a_{0} x_{0} \oplus a_{1} x_{1} \oplus \cdots \oplus a_{n-1} x_{n-1}
$$

is the modulo 2 sum of products of bits. Suppose that we are given a quantum circuit that evaluates $f(x)$ for any input x but that we do not know the value of a. To determine a on a classical computer would require n evaluations of f. This exercise, which is based on the analysis in Mermin, shows how to determine a with a single evaluation of f on a quantum computer.
(i) Let \mathbf{U}_{f} be an f-controlled unitary transformation on the tensor product of the n-bit input register initially in state $|x\rangle_{n}$ and a 1-bit output register initially in state $|y\rangle_{1}=\mathbf{H X}|0\rangle=(|0\rangle-|1\rangle) / \sqrt{2}$. Show that

$$
\mathbf{U}_{f}|x\rangle_{n}|y\rangle_{1}=(-1)^{f(x)}|x\rangle_{n}|y\rangle_{1}
$$

Answer: If $f(x)=0$ then U_{f} acts as the identity. If $f(x)=1$ then U_{f} flips the states of the second bit. Since $|y\rangle=(|0\rangle-|1\rangle) / \sqrt{2}$, flipping the bits reverses the sign of $|y\rangle$.
(ii) Show that

$$
\mathbf{H}^{\otimes n}|x\rangle_{n}=\frac{1}{2^{n / 2}} \sum_{y=0}^{2^{n}-1}(-1)^{x \cdot y}|y\rangle_{n}
$$

Answer: First note that

$$
\mathbf{H}|x\rangle_{1}=\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x}|1\rangle\right)=\frac{1}{\sqrt{2}} \sum_{y=0}^{1}(-1)^{x y}|y\rangle
$$

Now multiplying the sums for an n-bit ket, we obtain the required result where the dot product

$$
x \cdot y=\sum_{j} x_{j} y_{j}
$$

(iii) Show that

$$
\left(\mathbf{H}^{\otimes n} \otimes \mathbf{H}\right) \mathbf{U}_{f}\left(\mathbf{H}^{\otimes n} \otimes \mathbf{H}\right)|0\rangle_{n}|1\rangle_{1}=|a\rangle_{n}|1\rangle_{1} .
$$

Note that the unknown value of a appears in the input register!

Answer: Applying the given sequence of operations and inserting the results of parts (i) and (ii), we obtain

$$
\left(\mathbf{H}^{\otimes n} \otimes \mathbf{H}\right) \mathbf{U}_{f}\left(\mathbf{H}^{\otimes n} \otimes \mathbf{H}\right)|0\rangle_{n}|1\rangle_{1}=\frac{1}{2^{n}} \sum_{x y}(-1)^{f(x)+x \cdot y}|y\rangle_{n} \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
$$

Now set $f(\vec{x})=\vec{a} \cdot \vec{x}$ and consider the sum over \vec{x},

$$
\sum_{x}(-1)^{(a \cdot x)}(-1)^{(y \cdot x)}=\prod_{j=1}^{n} \sum_{x_{j}=0}^{1}(-a)^{\left(a_{j}+y_{j}\right) x_{j}}
$$

The sum over x_{j} vanishes unless $a_{j}+y_{j}=0 \bmod 2$ (i.e. $a_{j}=y_{j}$) so the product vanishes unless $\vec{y}=\vec{a}$, and the sum over y above contains only $y=a$.

