1. Spin states on the Bloch sphere

The unit vector \mathbf{n} with polar angle θ and azimuthal angle φ has Cartesian coordinates $(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$. Let $S_x = (\hbar/2)\sigma_x$, $S_y = (\hbar/2)\sigma_y$, and $S_z = (\hbar/2)\sigma_z$ be the x, y, and z components of the spin operator \mathbf{S}.

a) Express the operator $S_\mathbf{n} \equiv \mathbf{n} \cdot \mathbf{S}$ as a matrix in the $\{z^\pm\}$ basis.

b) $S_\mathbf{n}$ has two eigenvectors that we shall denote $|\mathbf{n}^+\rangle$ and $|\mathbf{n}^-\rangle$. Determine these eigenvectors and their corresponding eigenvalues.

2. Spin in constant magnetic field

The following problem is adapted from Cohen-Tannoudji, chapter 4. Consider a spin 1/2 particle in a constant magnetic field tilted slightly away from the z-axis in the yz-plane. The Hamiltonian

$$H = \frac{1}{2} (\omega_y \sigma_y + \omega_z \sigma_z).$$

a) Express H as a matrix in the standard basis $\{|z^+\rangle, |z^-\rangle\}$.

b) Express the eigenvalues and eigenvectors of H as explicit superpositions within the standard basis.

c) On a single set of axes, sketch the eigenvalues of H as functions of ω_z (consider both positive and negative values). Include both the case $\omega_y = 0$ and the case $\omega_y > 0$.

d) Expand the eigenvalues as power series in ω_z, keeping only the lowest nonzero power of ω_z. Treat both the case $\omega_y = 0$ and the case $\omega_y > 0$.

e) Letting the initial state $|\psi_0\rangle = |z^+\rangle$, determine the time-evolved state $|\psi(t)\rangle$. Hint: it may be convenient to express $|\psi(t)\rangle$ in the basis of eigenstates of the Hamiltonian.

f) Calculate the probability $P_{z^+}(t)$ of spin down $|z^-\rangle$ at time t given the initial spin up state $|z^+\rangle$ at time 0. Sketch this probability over one full period of Rabi oscillation. Be sure to label your axes with characteristic times and probabilities.
3. Quantum gates

a) Let Q be a spin 1/2 particle with magnetic moment $\mu = \gamma S = (\hbar/2)\gamma \sigma$. A static magnetic field of strength B acts in the direction \hat{n} for a period of time τ. Determine the direction \hat{n} and the time interval τ_H such that the unitary time evolution operator (expressed in the $\{|z^\pm\}\$ basis) is

$$\mathcal{H} = \frac{i}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

How does this transformation, known (aside from an irrelevant factor of i) as the Hadamard transformation, act on the states $\{|x^\pm\}$, $\{|y^\pm\}$, and $\{|z^\pm\}$ of Q? What happens if you evolve for time $2\tau_H$?

b) Let Q_1 and Q_2 be identical spin 1/2 particles. They interact with a magnetic field in the \hat{z} direction, and with each other, for a duration τ under the Hamiltonian

$$H = \frac{1}{2}(\hbar \omega_0) \left(-I + \sigma_2^{(1)} + \sigma_2^{(2)} - \sigma_2^{(1)} \otimes \sigma_2^{(2)} \right).$$

Here superscripts indicate the individual spins, and tensor products with identity operators are implicit where needed. Determine the time interval τ_Z for which the unitary time evolution operator (expressed in the basis $\{|z^\pm z^\pm\}\$) is

$$Z = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

This transformation is known as a controlled Z gate.

c) In the tensor product space of Q_1 and Q_2, apply the sequence of operations: \mathcal{H} on Q_2, followed by Z on $Q_1 \otimes Q_2$, followed by \mathcal{H}^\dagger on Q_2. Express the combined action as a matrix taking the basis states in the following order $\{|z^+ z^+, z^+ z^-, z^- z^+, z^- z^-\}\$. Why do we name this combination “controlled not”?

This question was inspired by reading a recent *Physics Today* article “Quantum computing with semiconductor spins” (see https://doi.org/10.1063/PT.3.4270) and was designed with help from Vikesh Siddhu.