
CHAPTER XII 

THE THEORY OF SYMMETRY 

§91. Symmetry transformations 
T H E classification of terms in the polyatomic molecule is fundamentally 
related to its symmetry, as in the diatomic molecule. Hence we shall begin 
by examining the types of symmetry which a molecule can have. 

The symmetry of a body is determined by the assembly of all those re­
arrangements after which the body is unaltered; these rearrangements are 
called symmetry transformations. Any possible symmetry transformation can 
be represented as a combination of one or more of the three fundamental 
types of transformation. These three essentially different types are: the 
rotation of the body through a definite angle about some axis, the reflection 
of it in some plane, and the parallel displacement of the body over some 
distance. Of these, the last evidently is applicable only to an infinite medium 
(a crystal lattice). A body of finite dimensions (in particular, a molecule) 
can be symmetrical only with respect to rotations and reflections. 

If the body is unaltered on rotation through an angle 2π\η about some 
axis, then that axis is said to be an axis of symmetry of the nth order. The 
number n can take any integral value: n = 2, 3, ... . The value n = 1 
corresponds to a rotation through an angle of 2π or, what is the same thing, 
of 0, i.e. it corresponds to an identical transformation. We shall symbolically 
denote by Cn the operation of rotation through an angle 2π/η about a given 
axis. Repeating this operation two, three, ... times, we obtain rotations 
through angles 2(27r/w), 3(2π/η), .. . , which also leave the body unaltered; 
these rotations may be denoted by Cn

2, Cn
3, . . . . It is obvious that, if p 

divides n> 

CJ = Cn/P. (91.1) 

In particular, performing the rotation n times, we return to the initial position, 
i.e. we effect an identical transformation. The latter is customarily denoted 
by E, so that we can write 

Cn
n = E. (91.2) 

If the body is left unaltered by a reflection in some plane, this plane is said 
to be a plane of symmetry. We shall denote by the symbol σ the operation 
of reflection in a plane. It is evident that a double reflection in the same 
plane is the identical transformation : 

σ2=Ε. (91.3) 
354 
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A simultaneous application of the two transformations (rotation and 

reflection) gives what are called the rotary-reflection axes. A body has a 
rotary-reflection axis of the nth order if it is left unaltered by a rotation 
through an angle 2π/η about this axis, followed by a reflection in a plane 
perpendicular to the axis (Fig. 32). It is easy to see that this is a new form 
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FIG. 32 

of symmetry only when n is even. For, if n is odd, an «-fold repetition of the 
rotary-reflection transformation would be equivalent to a simple reflection 
in a plane perpendicular to the axis (since the angle of rotation is 2π, while 
an odd number of reflections in the same plane amounts to a simple reflection). 
Repeating this transformation a further n times, we have as a result that the 
rotary-reflection axis reduces to the simultaneous presence of an axis of 
symmetry of the nth. order and an independent plane of symmetry perpen­
dicular to this axis. If, however, n is even, an w-fold repetition of the rotary-
reflection transformation returns the body to its initial position. 

We denote the rotary-reflection transformation by the symbol Sn. 
Denoting by σΑ a reflection in a plane perpendicular to a given axis, we can 
put, by definition, 

Sn = CnGh = ahCn; (91.4) 

the order in which the operations Cn and ah are performed clearly does not 
affect the result. 

An important particular case is a rotary-reflection axis of the second 
order. It is easy to see that a rotation through an angle π, followed by a 
reflection in a plane perpendicular to the axis of rotation, is the inversion 
transformation, whereby a point P of the body is carried into another point 
P', lying on the continuation of the line which joins P to the intersection O 
of the axis and the plane, and such that the distances OP and OP' are the same. 
A body symmetrical with respect to this transformation is said to have a 
centre of symmetry. We shall denote the operation of inversion by J, so that 
we have 

I=S2 =C2ah. (91.5) 

It is also evident that Iah = C2, IC2 = σΛ; in other words, an axis of the 
second order, a plane of symmetry perpendicular to it and a centre of sym-
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metry at their point of intersection are mutually dependent: if any two of 
these elements are present, the third is automatically present also. 

We shall now give var'ous purely geometrical properties of rotations and 
reflections which it is useful to bear in mind in studying the symmetry of 
bodies. 

A product of two rotations about axes intersecting at some point is a 
rotation about some third axis also passing through that point. A product 
of two reflections in intersecting planes is equivalent to a rotation ; the axis 
of this rotation is evidently the line of intersection of the planes, while 
the angle of rotation is easily seen, by a simple geometrical construction, to 
be twice the angle between the two planes. If we denote a rotation through 
an angle φ about an axis by C(<£), and reflections in two planes passing through 
that axis by the symbolsf συ and σ''Vì the above statement can be written as 

σνσ'ν = 0(2φ), (91.6) 

where φ is the angle between the two planes. It must be noted that the order 
in which the two reflections are performed is not immaterial. The trans­
formation σνσ'ν gives a rotation in the direction from the plane of σ ν to 
that of σν; on interchanging the factors we have a rotation in the oppo­
site direction. Multiplying equation (91.6) on the left by σν, we obtain 

a'v = avC(2^); (91.7) 

in other words, the operation of rotation, followed by reflection in a plane 
passing through the axis, is equivalent to a reflection in another plane 
intersecting the first at half the angle of rotation. In particular, it follows 
from this that an axis of symmetry of the second order and two mutually 
perpendicular planes of symmetry passing through it are mutually dependent ; 
if two of them are present, so is the third. 

We shall show that the product of rotations through an angle π about two 
axes intersecting at an angle φ (Oa and Ob in Fig. 33) is a rotation through 
an angle 2φ about an axis perpendicular to the first two (PP' in Fig. 33). 

p' 
FIG. 33 

f The suffix v customarily denotes a reflection in a plane passing through a given axis (a 
"vertical" plane), and the suffix h a reflection in a plane perpendicular to the axis (a 
"horizontal" plane). 



§92 Transformation groups 357 
For it is obvious that the resulting transformation is also a rotation; after 
the first rotation (about Oa) the point P is carried into P ' , and after the second 
(about Ob) it returns to its original position. This means that the line PP' 
remains fixed, and is therefore an axis of rotation. To determine the angle 
of rotation, it is sufficient to note that, in the first rotation, the axis Oa 
remains fixed, while after the second it takes the position Oa! y which makes 
an angle 2φ with Oa. In the same way we can see that, when the order of the 
two transformations is reversed, we obtain a rotation in the opposite direction. 

Although the result of two successive transformations in general depends 
on the order in which they are performed, in some cases the order of opera­
tions is immaterial : the transformations commute. This is so for the following 
transformations : 

(1) Two rotations about the same axis. 
(2) Two reflections in mutually perpendicular planes (equivalent to a 

rotation through π about their line of intersection). 
(3) Two rotations through π about mutually perpendicular axes (equivalent 

to a rotation through π about the third perpendicular axis). 
(4) A rotation and a reflection in a plane perpendicular to the axis of 

rotation. 
(5) Any rotation or reflection and an inversion with respect to a point 

lying on the axis of rotation or in the plane of reflection ; this follows 
from (1) and (4). 

§92. Transformation groups 
The set of all the symmetry transformations for a given body is called its 

symmetry transformation group (or simply its symmetry group). Hitherto we 
have spoken of these transformations as geometrical rearrangements of the 
body. However, in quantum-mechanical applications it is more convenient 
to regard symmetry transformations as transformations of the coordinates 
which leave the Hamiltonian of the system in question invariant. It is obvious 
that, if the system is left unaltered by some rotation or reflection, the cor­
responding transformation of the coordinates does not change its Schrödin-
ger's equation. Thus we shall speak of a transformation group with respect to 
which a given Schrodinger's equation is invariant·! 

t This point of view enables us to include in our considerations not only the rotation and 
reflection groups discussed here, but also other types of transformation which leave Schrödin-
ger's equation unaltered. These include the interchange of the coordinates of identical 
particles forming part of the system considered (a molecule or atom). The set of all possible 
permutations of identical particles in a given system is called its permutation group (we have 
already met these permutations in §63). The general properties of groups given below apply 
to permutation groups also; we shall not pause to study this type of group in more detail here. 

The following remark should be made concerning the notation which we use in this 
chapter. Symmetry transformations are essentially operators just like those which we con­
sider all through the book. They ought, therefore, to be denoted by letters with circumflexes. 
We do not do this, in view of the generally accepted notation, and because this omission 
cannot lead to misunderstandings in the present chapter. For the same reason we denote the 
identical transformation by the customary symbol E, and not by 1, which would correspond 
to the notation in the other chapters. Lastly, the inversion operator is denoted in this chapter 
by / , instead of P as in §30, although the latter is customary in recent literature on quantum 
mechanics. 
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Symmetry groups are conveniently studied with the help of the general 

mathematical techniques of what is called group theory\ the fundamentals of 
which we shall explain below. At first we shall consider groups, each of which 
contains a finite number of transformations (known as finite groups). Each of 
the transformations forming a group is said to be an element of the group. 

Symmetry groups have the following important properties. Each group 
contains the identical transformation E (called the unit element of the group). 
The elements of a group can be multiplied by one another ; by the product 
of two (or more) transformations we mean the result of applying them in 
succession. It is obvious that the product of any two elements of a group is 
also an element of that group. For the multiplication of elements we have 
the associative law (AB)C = A(BC)> where A, B, C are elements of a group. 
There is evidently no general commutative law; in general, AB Φ BA. 
For each element A of a group there is in the same group an inverse element 
A-1 (the inverse transformation), such that AA~X = E. In some cases an 
element may be its own inverse ; in particular, Ε~λ = E. It is evident that 
mutually inverse elements A and A'1 commute. 

The element inverse to the product AB of two elements is 

(AB)-1 = 5 - M - \ 

and similarly for the product of a greater number of elements ; this is easily 
seen by effecting the multiplication and using the associative law. 

If all the elements of a group commute, the group is said to be Abelian. 
A particular case of Abelian groups is formed by what are called cyclic groups. 
By a cyclic group we mean a group, all of whose elements can be obtained by 
raising one of them to successive powers, i.e. a group consisting of the 
elements 

A,A\A*, ...,An =E, 

where n is some integer. 
Let G be some group.f If we can separate from it some set of elements 

H such that the latter is itself a group, then the group H is called a sub-group 
of the group G. A given element of a group may appear in several of its 
sub-groups. 

By taking any element A of a group and raising it to successive powers, 
we finally obtain the unit element (since the total number of elements in the 
group is finite). If n is the smallest number for which An = E, then n is 
called the order of the element Ay and the set of elements A, A2, ... , An = E 
is called the period of A. The period is denoted by {A} ; it is itself a group, i.e. 
it is a sub-group of the original group, and is cyclic. 

In order to find whether a given set of elements of a group is a sub-group 
of it, it is sufficient to find whether, on multiplying any two of its elements, 
we obtain another element of the set. For in that case we have, together with 
each element A, all its powers, including An~x (where n is the order of A)y 

t We shall denote groups by bold italic letters. 
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which is the inverse of A (since An~x A — An — E)\ and there will obviously 
be a unit element. 

The total number of elements in a group is called its order. It is easy 
to see that the order of a sub-group is a factor of the order of the whole group. 
To show this, let us consider a sub-group H of a group G, and let Gx be 
some element of G which does not belong to H. Multiplying all the elements 
of H (on the right, say) by Gv we obtain a set (or complex, as it is called) 
of elements, denoted by HGV All the elements of this complex clearly belong 
to the group G. However, none of them belongs to H; for, if for any two 
elements Ha, Hb belonging to H we had HaG1 = Hb, it would follow that 
G1 = Ηα~λΗ0, i.e. Gx would also belong to the sub-group H, which is 
contrary to hypothesis. Similarly we can show that, if G2 is an element of G 
not belonging to H or to HGl9 none of the elements of the complex HG2 
will belong to H or to HGV Continuing this process, we finally exhaust 
all the elements contained in the finite group G. Thus all the elements are 
divided among the complexes (called the cosets of H in G) 

H, HGU HG2,..., HGm 

each of which contains h elements, h being the order of the sub-group H. 
Hence it follows that the order g of the group G is g = hm, and this proves 
the theorem. The integer m = gjh is called the index of the sub-group H 
in the group G. 

If the order of a group is a prime number, it follows at once from the 
above that the group has no sub-groups (except itself and E). The converse 
theorem is also valid : a group having no sub-groups is of prime order and in 
addition must be cyclic (since otherwise it would contain elements whose 
period would form a sub-group). 

We shall now introduce the important concept of conjugate elements. Two 
elements A and B are said to be conjugate if 

A = CBC-\ 

where C is also an element of the group ; multiplying this equation on the 
right by C and on the left by C- 1 , we have the converse equation B = C~XAC, 
An important property of conjugate elements is that, if A is conjugate to B, 
and B to C, then A is conjugate to C; for, if B = P^AP, C = Q~XBQ 
(P and Q being elements of the group), it follows that C = {PQ)-1A(PQ\ 
For this reason we can speak of sets of conjugate elements of a group. 
Such sets are called classes of conjugate elements, or simply classes, of the 
group. Each class is completely determined by any one element A of it; 
for, given A, we obtain the whole class by forming the products GAG'1, 
where G is successively every element of the group (of course, this may 
give each element of the class several times). Thus we can divide the whole 
group into classes; each element of the group can clearly appear in only 
one class. The unit element of the group is a class by itself, since for every 
element of the group G EG1 = E. If the group is Abelian, each of its 
elements is a class by itself; since all the elements, by definition, commute, 
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each element is conjugate only to itself. We emphasize that a class of a group 
(not being E) is not a sub-group of it; this is evident from the fact that it 
does not contain a unit element. 

All the elements of a given class are of the same order. For, if n is the 
order of the element A (so that An = E)y then for a conjugate element 
B = CAC-1 we have {CAC^f = CAnC~^ E. 

Let H be a sub-group of G, and Gx an element of G not belonging to H. 
It is easy to see that the set of elements G1//G1~1has all the properties of a 
group, i.e. it also is a sub-group of the group G. The sub-groups H and 
G^HG·^1 are said to be conjugate; each element of one is conjugate to one 
element of the other. By giving Gx various values, we obtain a series of 
conjugate sub-groups, which may partly coincide. It may happen that all 
the sub-groups conjugate to H are H itself. In this case H is called a normal 
divisor or invariant sub-group of the group G. Thus, for example, every 
sub-group of an Abelian group is clearly a normal divisor of it. 

Let us consider a group A with n elements A, A\ A'\ ... , and a group 
B with m elements B, B\ B'\ ... , and suppose that all the elements of A 
(apart from the unit E) are different from those of B but commute with 
them. If we multiply every element of group A by every element of group B, 
we obtain a set of nm elements, which also form a group. For, for any two 
elements of this set we have AB . Α'Β' = ΑΑ'. ΒΒ' = Α"Β", i.e. another 
element of the set. The group of order nm thus obtained is denoted by 
A x ß , and is called the direct product of the groups A and B. 

Finally, we shall introduce the concept of the isomorphism of groups. 
Two groups A and B of the same order are said to be isomorphous if we can 
establish a one-to-one correspondence between their elements, such that, if 
the element B corresponds to the element A, and B' to A\ then B" = BB' 
corresponds to A" = AA'. Two such groups, considered in the abstract, 
clearly have identical properties, though the actual meaning of their elements 
may be different. 

§93. Point groups 
Transformations which appear in the symmetry group of a body of finite 

dimensions (in particular, a molecule) must be such that at least one point of 
the body remains fixed when any of these transformations is applied. In 
other words, all axes and planes of symmetry of a molecule must have at least 
one common point of intersection. For a successive rotation of the body 
about two non-intersecting axes or a reflection in two non-intersecting planes 
results in a translation of the body, which obviously cannot then be left 
unaltered. Symmetry groups having the above property are called point groups. 

Before going on to construct the possible types of point group, we shall 
explain a simple geometrical procedure whereby the elements of a group may 
be easily divided into classes. Let Oa be some axis, and let the element A 
of the group be a rotation through a definite angle about this axis. Next, let G 
be a transformation (rotation or reflection) in the same group, which on being 
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applied to the same axis Oa carries it to the position Ob. We shall show that 
the element B = GAG'1 then corresponds to a rotation about the axis Ob 
through the same angle as that of the rotation about Oa to which the element 
A corresponds. For, let us consider the effect of the transformation GAG'1 

on the axis Ob itself. The transformation G"1 inverse to G carries the axis 
Ob to the position Oa, so that the subsequent rotation A leaves it in this 
position; finally, G carries it back to its initial position. Thus the axis Ob 
remains fixed, so that B is a rotation about this axis. Since A and B belong 
to the same class, their orders are the same; this means that they effect 
rotations through the same angle. 

Thus we reach the result that two rotations through the same angle belong 
to the same class if there is, among the elements of the group, a transformation 
whereby one axis of rotation can be carried into the other. In exactly the same 
way, we can show that two reflections in different planes belong to the same 
class if some transformation in the group carries one plane into the other. 
The axes or planes of symmetry whose directions can be carried into each 
other are said to be equivalent. 

Some additional comments are necessary in the case where both rotations 
are about the same axis. The element inverse to the rotation Cn

k (k = 
1, 2, . . . , w —1) about an axis of symmetry of the wth order is the element 
Cn~k = Cn

n~k
i i.e. a rotation through an angle {η—Κ)2ττ\η in the same 

direction or, what is the same thing, a rotation through an angle 2kn\n in 
the opposite direction. If, among the transformations in the group, there is 
a rotation through an angle π about a perpendicular axis (this rotation reverses 
the direction of the axis under consideration), then, by the general rule 
proved above, the rotations Cn

k and Cn~k belong to the same class. A 
reflection ah in a plane perpendicular to the axis also reverses its direction; 
however, it must be borne in mind that the reflection also changes the direction 
of rotation. Hence the existence of ah does not render Cn

k and Cn~k conju­
gate. A reflection σν in a plane passing through the axis, on the other hand, 
does not change the direction of the axis, but changes the direction of rota­
tion, and therefore Cn~fc = ovCn

kav, so that Cn
k and Cn"k belong to the same 

class if such a plane of symmetry exists. If rotations about an axis through the 
same angle in opposite directions are conjugate, we shall call it bilateral. 

The determination of the classes of a point group is often facilitated by the 
following rule. Let G be some group not containing the inversion J, and C^ 
a group consisting of the two elements I and E. Then the direct product 
G x Ci is a group containing twice as many elements as G ; half of them are the 
same as the elements of the group G, while the remainder are obtained by 
multiplying the latter by / . Since / commutes with any other transformation 
of a point group, it is clear that the group G x C€ contains twice as many 
classes as G ; to each class A of the group G there correspond the two classes 
A and AI in the group G x Ci. In particular, the inversion / always forms 
a class by itself. 

Let us now go on to enumerate all possible point groups. We shall con­
struct these by starting from the simplest ones and adding new elements of 
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symmetry. We shall denote point groups by bold italic Latin letters with 
appropriate suffixes. 

I. Cn groups 
The simplest type of symmetry has a single axis of symmetry of the nth 

order. The group Cn is the group of rotations about an axis of the nth order. 
This group is evidently cyclic. Each of its n elements forms a class by itself. 
The group Cx contains only the identical transformation E, and corresponds 
to the absence of any symmetry. 

I L S2n groups 
The group S2n is the group of rotary reflections about a rotary-reflection 

axis of even order 2w. It contains 2n elements and is evidently cyclic. In 
particular, the group S2 contains only two elements, E and J; it is also denoted 
by C{. We may note also that, if the order of a group is a number of the form 
2n = 4^+2, inversion is among its elements; it is clear that (S^p+2)2p+1 

= C2 ah = / . Such a group can be written as a direct product S^p+2
 == ^2p+i 

xCt · ; it is also denoted by C2p+li. 
m · cnh groups 

These groups are obtained by adding to an axis of symmetry of the nth 
order a plane of symmetry perpendicular to it. The group Cnh contains 
2n elements: n rotations of the group Cn and n rotary-reflection trans­
formations Cn

kah, k = 1, 2, . . . , n (including the reflection Cn
nah = σΛ). 

All the elements of the group commute, i.e. it is Abelian; the number of 
classes is the same as the number of elements. If n is even (n = 2p), the group 
contains a centre of symmetry (since C2p

pah = C2ah = J). The simplest 
group, Clhy contains only two elements, E and σΛ; it is also denoted by Cs. 
I V · cnv groups 

If we add to an axis of symmetry of the wth order a plane of symmetry 
passing through it, this automatically gives another n — 1 planes intersecting 
along the axis at angles of njn, as follows at once from the geometrical 
theoremf (91.7). The group Cnv thus obtained therefore contains 2n 
elements : n rotations about the axis of the nth order, and n reflections σν in 
vertical planes. Figure 34 shows, as an example, the systems of axes and 
planes of symmetry for the groups CZv and C4v. 

To determine the classes, we notice that, because of the presence of planes 
of symmetry passing through the axis, the latter is bilateral. The actual 
distribution of the elements among the classes depends on whether n is 
even or odd. 

If n is odd (n = 2/> + l), successive rotations C2 p + 1 carry each of the 
planes successively into each of the other 2p planes, so that all the planes of 

t In a finite group, there cannot be two planes of symmetry intersecting at an angle which 
is not a rational fraction of 2π. If there were two such planes, it would follow that there were 
an infinite number of other planes of symmetry, intersecting along the same line and obtained 
by reflecting one plane in the other ad infinitum. In other words, if there are two such planes, 
there must be complete axial symmetry. 
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symmetry are equivalent, and the reflections in them belong to a single class. 
Among rotations about the axis there are 2p operations apart from the identity, 
and these are conjugate in pairs, forming p classes each of two elements 
(C2p+ik and C2p+i~k, k = 1, 2, ... >p); moreover, E forms an extra class. 
Thus there are/)+2 classes altogether. 

w 
V N 

£fc 

*-3» 
FIG. 34 

If, on the other hand, n is even (n = 2p)> only every alternate plane can 
be interchanged by successive rotations C2p ; two adjacent planes cannot be 
carried into each other. Thus there are two sets of p equivalent planes, and 
accordingly two classes of p elements (reflections) each. Of the rotations 
about the axis, C2p

2p = E and C2p
p = C2 each form a class by themselves, 

while the remaining 2p—2 rotations are conjugate in pairs and give another 
/> — 1 classes, each of two elements. The group C2p v thus has p+3 classes 
altogether. 

V. Dn groups 
If we add to an axis of symmetry of the nth order an axis of the second 

order perpendicular to it, this involves the appearance of a further n —1 
such axes, so that there are altogether n horizontal axes of the second order, 
intersecting at angles π/η. The resulting group Dn contains 2w elements: 
n rotations about an axis of the nth order, and n rotations through an angle 
π about horizontal axes (we shall denote the latter by £/2, reserving the notation 
C2 for a rotation through an angle π about a vertical axis). Fig. 34 shows, as 
an example, the systems of axes for the groups D3 and D4. 

In an exactly similar manner to case IV, we may verify that the axis of the 
nth order is bilateral, while the horizontal axes of the second order are all 
equivalent if n is odd, or form two non-equivalent sets if n is even. Con­
sequently, the group D2p has the following p + 3 classes: 2?, 2 classes each of 
p rotations U2, the rotation C2, and/)—1 classes each of two rotations about 
the vertical axis. The group Djjp+1, on the other hand, has p+2 classes: 
Ey2p + \ rotations U2, and/) classes each of two rotations about the vertical 
axis. 

An important particular case is the group D2. Its system of axes is 
composed of three mutually perpendicular axes of the second order. This 
group is also denoted by V. 
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V I · Dnh groups 

If we add to the system of axes of a group Dn a horizontal plane of sym­
metry passing through the n axes of the second order, n vertical planes 
automatically appear, each of which passes through the vertical axis and one 
of the horizontal axes. The group Dnh thus obtained contains \n elements; 
besides the 2n elements of the group Dn, it contains also n reflections συ 
and n rotary-reflection transformations Cn

koh. Figure 35 shows the system 
of axes and planes for the group D3h. 

ψ 
Tffff 

The reflection ah commutes with all the other elements of the group; 
hence we can write Dnh as the direct product Dnh = DnxCs, where Cs is 
the group consisting of the two elements E and ah. For even n the inversion 
operation is among the elements of the group, and we can also write 
^2p, h = &2p X Ci-

Hence it follows that the number of classes in the group Dnh is twice the 
number in the group Dn. Half of them are the same as those of the group 
Dn (rotations about axes), while the remainder are obtained by multiplying 
these by σΛ. The reflections σν in vertical planes all belong to a single class 
(if n is odd) or form two classes (if n is even). The rotary-reflection trans­
formations chCn

k and ohCn~k are conjugate in pairs. 

VII. Dnd groups 
There is another way of adding planes of symmetry to the system of axes 

of the group Dn. This is to draw vertical planes through the axis of the wth 
order, midway between each adjacent pair of horizontal axes of the second 
order. The adding of one such plane again involves the appearance of another 
(fl — l) planes. The system of axes and planes of symmetry thus obtained 
determines the group Dna. Figure 35 shows the axes and planes for the groups 
D 2 d a n d D 3 d . 

The group Dnd contains 4w elements. To the 2« elements of the group 
Dn are added n reflections in the vertical planes (denoted by σα—the "diago­
nal" planes) and n transformations of the form G = ΙΙ2σα. In order to 
ascertain the nature of these latter, we notice that the rotation U2 can, by 
(91.6), be written in the form U2 = ahavi where σν is a reflection in the verti-
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cal plane passing through the corresponding axis of the second order. Then 
G = σησνσά (the transformations σν, ah alone are not, of course, among 
the elements of the group). Since the planes of the reflections συ and ad 
intersect along an axis of the nth order, forming an angle (2Ä + 1)7T/2W, 
where k = 1, ... , (n — 1) (since here the angle between adjacent planes is 
TT/2W), it follows that, by (91.6), we have σνσά = C2n

2fc+1. Thus we find that 
G = o}iC2n2k+1 = S2n2k+1, i.e. these elements are rotary-reflection trans­
formations about the vertical axis, which is consequently not a simple axis 
of symmetry of the wth order, but a rotary-reflection axis of the 2wth order. 

The diagonal planes reflect two adjacent horizontal axes of the second 
order into each other ; hence, in the groups under consideration, all axes of 
the second order are equivalent (for both even and odd n). Similarly, all 
diagonal planes are equivalent. The rotary-reflection transformations 
S2n2k+1 and S2n~2k~1 are conjugate in pairs.f 

Applying these considerations to the group D2p dJ we find that it contains 
the following 2p + 3 classes: E, the rotation C2 about the axis of the wth 
order, (/> — 1) classes each of two conjugate rotations about the same axis, 
one class of the 2p rotations U2> one class of 2p reflections ad, andp classes 
each of two rotary-reflection transformations. 

For odd n ( = 2p + l)y inversion is among the elements of the group; this 
is seen from the fact that, in this case, one of the horizontal axes is perpen­
dicular to a vertical plane. Hence we can write D2p+1 d = ο 2 ρ + 1 χ ^ , 
so that the group D2p+1d contains 2p+4 classes, which are obtained at 
once from the p+2 classes of the group D2p+1. 

VIII. The group T (the tetrahedron group) 
The system of axes of this group is the system of axes of symmetry of a 

tetrahedron. It can be obtained by adding to the system of axes of the group 
V four oblique axes of the third order, rotations about which carry the three 
axes of the second order into one another. This system of axes is conveniently 
represented by showing the three axes of the second order as passing through 
the centres of opposite faces of a cube, and those of the third order as the 
spatial diagonals of the cube. Figure 36 shows the position of these axes in a 
cube and in a tetrahedron (one axis of each type is shown). 

FIG. 36 

f For we have 
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The three axes of the second order are mutually equivalent. The axes of 

the third order are also equivalent, since they are carried into one another by 
the rotations C2, but they are not bilateral axes. Hence it follows that the 
twelve elements in the group T are divided into four classes : E> the three 
rotations C2, the four rotations C3 and the four rotations C3

2. 

IX. The group Td 
This group contains all the symmetry transformations of the tetrahedron. 

Its system of axes and planes can be obtained by adding to the axes of the 
group T planes of symmetry, each of which passes through one axis of the 

Fio. 37 

second order and two of the third order. The axes of the second order thereby 
become rotary-reflection axes of the fourth order (as in the case of the group 
D2d). This system is conveniently represented by showing the three rotary-
reflection axes as passing through the centres of opposite faces of a cube, the 
four axes of the third order as its spatial diagonals, and the six planes of 
symmetry as passing through each pair of opposite edges (Fig. 37 shows one 
of each kind of axis and one plane). 

Since the planes of symmetry are vertical with respect to the axes of the 
third order, the latter are bilateral axes. All the axes and planes of a given 
kind are equivalent. Hence the 24 elements of this group are divided into 
the following five classes: E, eight rotations C3 and C3

2, six reflections in 
planes, six rotary-reflection transformations S4 and S43, and three rotations 
C2 = *54

2. 
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X. The group Th 

This group is obtained from T by adding a centre of symmetry: Th 
= TxC^ As a result, three mutually perpendicular planes of symmetry 
appear, passing through each pair of axes of the second order, and the axes of 
the third order become rotary-reflection axes of the sixth order (Fig. 38 
shows one of each kind of axis and one plane). 

F I G . 38 

The group contains 24 elements divided among eight classes, which are 
obtained at once from those of the group Γ. 

XL The group O (the octahedron group) 
The system of axes of this group is the system of axes of symmetry of a 

cube: three axes of the fourth order pass through the centres of opposite 
c3 

/ I \ 
/ ' \ 
^"k:\" 
1 ' ^ ^ 
I 1 
1 J ~ — 
1 / 1 / 
1 / 
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i 1 

0 
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faces, four axes of the third order through opposite corners, and six axes of the 
second order through the midpoints of opposite edges (Fig. 39). 

It is easy to see that all the axes of a given order are equivalent, and each 
of them is bilateral. Hence the 24 elements are divided among the following 
five classes: E> eight rotations C3 and C3

2, six rotations C4 and C4
3, three 

rotations C4
2 and six rotations C2. 

XII. The group Oh 
This is the group of all symmetry transformations of the cube.f It is 

f The groups T, Ta, Tfly O, Oh are called cubic groups. 
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obtained by adding to the group O a centre of symmetry: Oh = OxC^ 
The axes of the third order in the group O are thereby converted into rotary-
reflection axes of the sixth order (the spatial diagonals of the cube); in 
addition, another six planes of symmetry appear, passing through each pair 
of opposite edges, and three planes parallel to the faces of the cube (Fig. 
40). The group contains 48 elements divided among ten classes, which 

FIG. 40 

can be at once obtained from those of the group O ; five classes are the same 
as those of the group O, while the remainder are: / , eight rotary-reflection 
transformations SQ and SQ5, six rotary-reflection transformations C\a^ 
(?4

3σΛ about axes of the fourth order, three reflections σΛ in planes horizontal 
with respect to the axes of the fourth order, and six reflections σν in planes 
vertical with respect to these axes. 

XIII , XIV. The groups Y> Yh (the icosahedron groups) 
These groups occur only exceptionally in Nature as symmetry groups of 

molecules. Hence we shall here only mention that F is a group of 60 rotations 
about the axes of symmetry of the icosahedron (a regular solid with twenty 
triangular faces) or of the pentagonal dodecahedron (a regular solid with 
twelve pentagonal faces); there are six axes of the fifth order, ten of the 
third and fifteen of the second. The group Yn is obtained by adding a centre 
of symmetry : Yh = Y x C$, and is the complete group of Symmetry trans­
formations of the above-mentioned polyhedra. 

This exhausts all possible types of point group containing a finite number 
of elements. In addition, we must consider what are called continuous point 
groups, which contain an infinite number of elements. This we shall do in 
§98. 

§94. Representations of groups 
Let us consider any symmetry group, and let ψχ be some one-valued func­

tion of the coordinates in the configuration space of the physical system 
concerned. Under the transformation of the coordinate system which 
corresponds to an element G of the group, this function is changed into 
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some other function. On performing in turn all the g transformations 
in the group (g being the order of the group), we in general obtain g different 
functions from φχ. For certain φχ, however, some of these functions 
may be linearly dependent. As a result we obtain some number / ( < # ) of 
linearly independent functions φν φ2, . . . , φρ which are transformed into 
linear combinations of one another under the transformations belonging to 
the group in question. In other words, as a result of the transformation Gy 

each of the functions φί (i = 1, 2, 3, . . . , / ) is changed into a linear combina­
tion of the form 

where the Gik are constants depending on the transformation G. The array 
of these constants is called the matrix of the transformation.! 

In this connection it is convenient to regard the elements G of the group 
as operators acting on the functions ψϊ9 so that we can write 

oft = £<?„&; (94.1) 

the functions φ% can always be chosen so as to be orthonormal. Then the 
concept of the matrix of the transformation is the same as that of the matrix 
of the operator, in the form defined in §11 : 

Gik=^^kdq. (94.2) 

To the product of two elements G and H of the group there corresponds 
the matrix obtained from the matrices of G and H by the ordinary rule 
of matrix multiplication (11.12): 

Ä = S G A · (94.3) 

The set of matrices of all the elements in a group is called a representation 
of the group. The functions φν . . . , φ^ with respect to which these matrices 
are defined are called the basis of the representation. The number/of these 
functions gives what is called the dimension of the representation. 

Let us consider the integrals ^φ^φ^ àq. Since the integration is taken 
over all space, it is evident that the values of the integrals are unchanged by 
any rotation or reflection of the coordinate system. That is, the symmetry 
transformations do not destroy the orthonormality of the base functions, 
and therefore the operators (? are unitary (see §12).J Accordingly, the 
matrices which represent the elements of a group in a representation with 
an orthonormalized basis are also unitary. 

f Since the functions φι are assumed one-valued, a definite matrix corresponds to each 
element of the group. 

J In this argument it is important that the integrals are either equal to zero (for ΐφΚ), or 
definitely not zero (for i = h) because the integrand | ψϊ\2 is positive. 



370 The Theory of Symmetry §94 
Suppose that we perform on the system of functions ψι,..., \jjf the linear 

unitary transformation 
f i =&/<*. (94.4) 

This gives a new system of functions ψΊ,..., φ'/> which are also orthonormal 
(see §12).*)* If we now take, as the basis of the representation, the functions 
φ\, we obtain a new representation of the same dimension. Such representa­
tions, obtained from one another by a linear transformation of their base 
functions, are said to be equivalent ; it is evident that they are not essentially 
different. 

The matrices of equivalent representations can be simply expressed in terms 
of one another. According to (12.7), the matrix of the operator Û in the new 
representation is the matrix of the operator 

Ô' = S^Ö§ (94.5) 

in the old representation. 
The sum of the diagonal elements (i.e. the trace) of the matrix representing 

an element G of a group is called its character] we shall denote it by x(G). 
It is a very important result that the characters of the matrices of equivalent 
representations are the same (see (12.11)). This circumstance gives par­
ticular importance to the description of group representations by stating 
their characters: it enables us to distinguish at once the fundamentally 
different representations from those which are equivalent. Henceforward 
we shall regard as different representations only those which are not 
equivalent. 

If we take S in (94.5) to be that element of the group which relates the 
conjugate elements G and G', we have the result that, in any given represen­
tation of a group, the characters of the matrices representing elements of the 
same class are the same. 

The identical transformation corresponds to the unit element E of the 
group. Hence the matrix representing the latter is diagonal in every represen­
tation, and the diagonal elements are unity. The character χ(Ε) is con­
sequently just the dimension of the representation : 

X(E) = / · (94.6) 

Let us consider some representation of dimension/. It may happen that, 
as a result of a suitable linear transformation (94.4), the base functions 
divide into sets of / i , / 2 , . . . functions (/1+/2+... = / ) , in such a way that, 
when any element of the group acts on them, the functions in each set are 
transformed only into combinations of themselves, and do not involve 
functions from other sets. In such a case the representation in question is 
said to be reducible. 

If, on the other hand, the number of base functions that are transformed 
only into combinations of themselves cannot be reduced by any linear trans­
formation of them, the representation which they give is said to be irreducible. 

f From (12.12), the unitarity of the transformations implies that the sum of the squared 
moduli of the base functions is invariant. 
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Any reducible representation can, as we say, be decomposed into irreducible 
ones. This means that, by the appropriate linear transformation, the base 
functions divide into several sets, of which each is transformed by some 
irreducible representation when the elements of the group act on it. Here 
it may be found that several different sets transform by the same irreducible 
representation; in such a case this irreducible representation is said to be 
contained so many times in the reducible one. 

Irreducible representations are an important characteristic of a group, and 
play a fundamental part in all quantum-mechanical applications of group 
theory. We shall give the chief properties of irreducible representations.! 

It may be shown that the number of different irreducible representations 
of a group is equal to the number r of classes in the group. We shall distin­
guish the characters of the various irreducible representations by indices; 
the characters of the matrices of the element G in the representations are 
X«\G),xv\G),...,x"(G). 

The matrix elements of irreducible representations satisfy a number of ortho­
gonality relations. First of all, for two different irreducible representations 
the relations 

S ^ r t G W ) l m * = 0 (94.7) 

hold, where a and β (α Φ ß) refer to the two irreducible representations, and the 
summation is taken over all the elements of the group. For any irreducible 
representation the relations 

| ( ? W = f SA™ (94.8) 
JO. 

hold, i.e. only the sums of the squared moduli of the matrix elements are not 
zero: 

The relations (94.7), (94.8) can be combined in the form 

§ σ»Λσ»*· = τ Μ Α « . (94·9) 
Jot 

In particular, we can obtain from this an important orthogonality relation 
for the characters of the representations. Summing both sides of equation 
(94.9) over equal values of the suffixes z, k and /, m, we have 

Sx<«>(G)x<0(G)* =gKß. (94.10) 

For a = ß we have 

$\xl"\G)\2=g, 

t The proof of these properties may be found in any textbook on group theory. 
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i.e. the sum of the squared moduli of the characters of an irreducible represen­
tation is equal to the order of the group. We may notice that this relation 
can be used as a criterion of the irreducibility of a representation; for a 
reducible representation, this sum is always greater than g (for instance, it is 
ng if the representation contains n different irreducible parts). 

It also follows from (94.10) that the equality of the characters of two 
irreducible representations is not only a necessary but also a sufficient con­
dition for them to be equivalent. 

Since the characters of elements of the same class are equal, the sum 
(94.10) actually contains only r independent terms, and can be written in 
the form 

$gcxM{C)x(ß\C)*=gKß. (94.11) 

where the summation is over the r classes of the group (arbitrarily denoted 
by C) and gc is the number of elements in class C. 

Since the number of irreducible representations is equal to the number of 
classes, the quantities fac = V(gclg)x^KC) f ° r m a square matrix of r2 

quantities. 
The orthogonality relations for the first suffix, 

Zfzcfpc* = δα/?, 

then automatically give those for the second suffix, 

a 

Hence, besides (94.11), we have 

Σ x<*>(C)x<*>(C')* = (glgc)8cc: (94.12) 

Among the irreducible representations of any group there is always a 
trivial one, given by a single base function invariant under all the transforma­
tions in the group. This one-dimensional representation is called the unit 
representation ; in it, all characters are unity. If one of the representations 
in the orthogonality relation (94.10) or (94.11) is the unit representation, 
the other is such that 

g x « ( G ) = g m « ( C ) = 0, (94.13) 

i.e. the sum of the characters of all the elements of the group is zero for 
every irreducible representation. 

The relation (94.10) enables any reducible representation to be very easily 
decomposed into irreducible ones if the characters of both are known. Let 
X(G) be the characters of some reducible representation of dimension / , 
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and let the numbers a^\ a<2\ ... , #<r> indicate how many times the cor­
responding irreducible representations are contained in it, so that 

£ * % = / , (94.14) 

where fß are the dimensions of the irreducible representations. Then the 
characters x(G) can be written 

X(G) = icVW>{G). (94.15) 
0 - 1 

Multiplying this equation by x(0£)(G)* and summing over all G, we have by 
(94.10) 

e ^ = - S x ( G ) x W ( G ) · (94.16) 
g ° 

Let us consider a representation of dimension f = g, given by the g 
functions οφ, φ being some general function of the coordinates (so that 
all the g functions ύφ obtained from it are linearly independent) ; such a 
representation is said to be regular. It is clear that none of the matrices of 
this representation will contain any diagonal elements, with the exception of 
the matrix corresponding to the unit element; hence x(G) = 0 for G Φ E, 
while χ(Ε) = g. Decomposing this representation into irreducible ones, we 
have for the numbers α<α>, by (94.16), the values a^ = (llg)gfW = /<">, i.e. 
each irreducible representation is contained in the reducible one under 
consideration as many times as its dimension. Substituting this in (94.14), 
we find the relation 

/ i 2 + / 2
2 + . . . + / r

2 = £ ; (94.17) 

the sum of the squared dimensions of the irreducible representations of a 
group is equal to its order.f Hence it follows, in particular, that for Abelian 
groups (where r = g) all the irreducible representations are of dimension one 
(A = / · = - = / , = !)· 

We may also remark, without proof, that the dimensions of the irreduciBle 
representations of a group divide its order. 

In practice, the decomposition of a regular representation into irreducible 
parts is made by means of the formula 

φ{(«) =Ù^GikWÔ</,. (94.18) 
S G 

It is easy to verify that the functions φ^α\ί = 1, 2, . . . , /α) represented by 
this formula with a given value of k are transformed according to 

οφ^) = Σ σΜ<"ψι<">, 
f It may be mentioned that, for point groups, equation (94.17) for given r and g can in 

practice be satisfied in only one way by a set of integers/j, ..., fr. 
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i.e. they are a basis of the ath irreducible representation. By giving various 
values to k we obtain in this way fa different sets of base functions φι^ for 
one irreducible representation, in accordance with the fact that each 
irreducible representation appears fa times in the regular representation. 

Any function φ may be written as a sum of functions transformed by the 
irreducible representations of the group. This problem is solved by the 
formulae 

^= Σ Σ ^(α)> ^(α) = ~ Σ G**(a)*ö,A· (9 4 ·1 9) 
a i S G 

To prove this, we substitute the second formula in the first and calculate 
the sura over /, obtaining 

φ = -Υ/Λχ^*(0). Οψ. (94.20) 
g a 

Since the dimensions fa coincide with the characters χ^(Ε) of the unit 
element of the group, we can use the orthogonality relation (94.12) to show 
that the sum in (94.20) is non-zero (and equal to g) only if G is the unit 
element of the group. Hence the right-hand side of (94.20) is identically 
equal to φ. 

Let us consider two different systems of functions ψ^,..., ^/ (α) and 
Ψι^\ ··· y Φί8^\ which form two irreducible representations of a group. 
By forming the products φ^φ^ν/e obtain a system of fafß new functions, 
which can serve as the basis for a new representation of dimension fafß. 
This representation is called the direct product or Kronecker product of the 
other two; it is irreducible only if/a or fß is unity. It is easy to see that the 
characters of the direct product are equal to the products of the characters 
of the two component representations. For, if 

6φ/* - Σ GfW, Οφΐ» = Σ G m ^ m ( Ä , 

then 

hence we have for the characters, which we denote by (χ^Χχ^Χ^)» 

(X<*>XX(/»)(G) = §G,/«Gtt<0 = Σ G„w Σ Gkk(fi9 

i.e. 
(χ ( α ) Χχ<^) = x<a)(G)x<*(G). (94.21) 

The two irreducible representations so multiplied may, in particular, be 
the same; in this case we have two different sets of functions ψΐ9..., φ/ 
and φΐ9..., φ/ giving the same representation, while the direct product of 
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the representation with itself is given by the f2 functions φ^φ^ and has the 
characters 

(XXX)(G) = [X(G)P· 

This reducible representation can be at once decomposed into two represen­
tations of smaller dimension (although these are, in general, themselves 
reducible). One of them is given by the £ / ( / + l ) functions φ^κ+ΦΐοΦ* *he 

other by the £/(/— 1) functions φ^^—φ^Φ^ t # A ; it is evident that the func­
tions in each of these sets are transformed only into combinations of them­
selves. The former is called the symmetric product of the representation with 
itself, and its characters are denoted by the symbol [x2](G);the latterie 
called the antisymmetric product, and its characters are denoted by {χ2} (G). 
To determine the characters of the symmetric product, we write 

£(0i<£fc+AA) =jjj Οιβ^φ^η,+φΜ 

Hence we have for the character 

[x2](G)=i^(G>,GfcÄ+GifcGfci). 

But EGu = x(G), and Σ GikGki = x(G2) ; thus we finally obtain the 
formula 

[x2](G)=K[x(G)]2+x(G2)}, (94.22) 

which enables us to determine the characters of the symmetric product of a 
representation with itself from the characters of the representation. In an 
exactly similar manner, we find for the characters of the antisymmetric 
product the formulaf 

{X2}(G) = M[x(G)]2-x(<?*)}. (94.23) 

If the functions φί and φί are the same, we can evidently construct from 
them only the symmetric product, formed by the squares φ{

2 and the pro­
ducts ΦιΦ^ i Φ k- I n applications, symmetric products of higher orders are 
also encountered; their characters may be obtained in a similar manner. 

An important property of direct products is the following. The decom­
position of the direct product of two different irreducible representations into 
irreducible parts contains the unit representation (and only once) only if 
the representations multiplied together are complex conjugates. For real 
representations, the unit representation is present only in the direct product 
of an irreducible representation with itself, and is of course in the symmetric 
part. In order to know whether the unit representation is present in the 

t It is useful to note that, for representations of dimension 2, the characters (x2}(G) are 
equal to the determinants of the linear transformations G, as can easily be shown by direct 
calculation. 
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representation (94.21), we simply sum its characters with respect to G and 
divide the result by the order g of the group, in accordance with (94.16). The 
conclusion stated then follows at once from the orthogonality relations 
(94.10). 

Finally, we shall make a few remarks regarding the irreducible represen­
tations of a group which is the direct product of two other groups (not 
to be confused with the direct product of two representations of the same 
group). If the functions 0 ί

( α ) give an irreducible representation of the group 
i4, and the functions </>kW give one of the group B, the products φ^Φι^ 
are the basis of an /α/β-dimensional representation of the group ΑχΒ, and 
this representation is irreducible. The characters of this representation are 
obtained by multiplying the corresponding characters of the original represen­
tations (cf. the derivation of formula (94.21)); to an element C = AB of 
the group A xB there corresponds the character 

X(C) = χΜ(Α)Χν>(Β). (94.24) 

Multiplying together in this way all the irreducible representations of the 
groups A and Bf we obtain all the irreducible representations of the group 
AxB. 

§95. Irreducible representations of point groups 
Let us pass now to the actual determination of the irreducible represen­

tations of point groups. The great majority of molecules have axes of 
symmetry only of the second, third, fourth or sixth order. Hence we shall 
not consider the icosahedron groups F, Yn\ we shall examine the groups 

Dnì Dnh only for the values n = 1, 2, 3, 4, 6, and the groups 
Szn, Dnd only for n = 1, 2, 3. 

The characters of the representations of these groups are shown in Table 7. 
Isomorphous groups have the same representations and are given together. 
The numbers in front of the symbols for the elements of a group in the upper 
rows show the numbers of elements in the corresponding classes (see §93). 
The left-hand columns show the conventional names usually given to the 
representations. The one-dimensional representations are denoted by the 
letters A> B> the two-dimensional ones by E> and the three-dimensional 
ones by F; the notation E for a two-dimensional irreducible representation 
should not be confused with the unit element of a group.f The base functions 
of A representations are symmetric, and those of B representations antisym­
metric, with respect to rotations about a principal axis of the nth order. 
The functions of different symmetry with respect to a reflection en are 
distinguished by the number of primes (one or two), while the suffixes 
g and u show the symmetry with respect to inversion. Beside the symbols 
for the representations are placed the letters x> y> z\ these show the repre-

t The reason why two complex conjugate one-dimensional representations are shown as 
one two-dimensional one is explained in §96. 
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sentations by which the coordinates themselves are transformed. The #-axis 
is always taken along the principal axis of symmetry. The letters € and ω 
denote 

€ = e2ni/3y ω = e2ni/6 = _ ω 4 . 

€ + € 2 = — 1, ω 2 — ω = — 1. 

The simplest problem is to determine the irreducible representations for 

TABLE 7 

Characters of irreducible representations of point groups 

c, 
c, 

cs 
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TABLE 7—continued 

§95 

ct, 
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Ci 
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2C4 
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1 
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0 
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1 
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D, 

A, 
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Bi 

Bi 

Ei 
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Ai 

Bi 

Bi 

Ei 
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E" 

z 

y 

E 

E 

E 

1 

1 

1 

1 

2 

2 

Ci 

Ci 

σΑ 

1 

1 

- 1 

- 1 

2 

- 2 

2C, 

2C8 
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1 

1 

1 

1 

- 1 

- 1 

2Ce 
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2SZ 

1 

1 

- 1 

- 1 

- 1 

1 
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3σν 

3U2 

1 

- 1 

1 

- 1 

0 

0 
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3σ\ 

3σ\ 

1 

- 1 

- 1 

1 

0 

0 

T 

A 

E 

F; χ, y y z 

E 

1 

1 

1 

3 

3C2 

1 

1 

1 

- 1 

4C3 4C3
2 

1 1 

ε ε* 

ε* ε 

0 0 

o 

Αι 

A, 

E 

F* 

F1;x, y, 

τ„ 

At 

At 

E 

Ft-,χ 

z F, 

yf z 

E 

E 

1 

1 

2 

3 

3 

8C3 

8C8 

1 

1 

- 1 

0 

0 

3C2 

3C2 

1 

1 

2 

- 1 

- 1 

6Ci 6C4 

6ad 6Sé 

1 1 

- 1 - 1 

0 0 

1 - 1 

- 1 1 
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the cyclic groups (Cnt Sn). A cyclic group, like any Abelian group, has only 
one-dimensional representations. Let G be a generating element of the group 
(i.e. one which, on being raised to successive powers, gives all the elements 
of the group). Since G* = E (where g is the order of the group), it is clear 
that, when the operator Ù acts on a base function φ, the latter can be multi­
plied only by l1/*, i.e.f 

Οφ =é?a^*/*0 (£ = 1,2, . . . ,£). 

The group C2ìl (anQÌ t n e isomorphous groups C2v and D2) is Abelian, so 
that all its irreducible representations are one-dimensional, and the characters 
can only be ± 1 (since the square of every element is E). 

Next we consider the group C3v. As compared with the group C3, the 
reflections σν in vertical planes (all belonging to one class) are here added. 
A function invariant with respect to rotation about the axis (a base function 
of the representation A of the group C3) may be either symmetric or anti­
symmetric with respect to the reflections σν. Functions multiplied by € 
and e2 under the rotation C3, on the other hand (base functions of the com­
plex conjugate representations E)y change into each other on reflection. J 
It follows from these considerations that the group CBv (and D3, which is 
isomorphous with it) has two one-dimensional irreducible representations 
and one two-dimensional, with the characters shown in the table. The fact 
that we have indeed found all the irreducible representations may be seen 
from the result l2 + l 2 + 2 2 = 6, which is the order of the group. 

Similar considerations give the characters of the representations of other 
groups of the same type (C4v, C6v). 

The group T is obtained from the group D2 = V by adding rotations about 
four oblique axes of the third order. A function invariant with respect to 
transformations of the group V (a basis of the representation A) can be 
multiplied, under the rotation C3, by 1, e or e2. The base functions of the 
three one-dimensional representations 5χ, B2y Bz of the group V change into 
one another under rotations about the axes of the third order (this is seen. 
for example, if we take as these functions the coordinates x9 y, z themselves). 
Thus we obtain three one-dimensional irreducible representations and one 
three-dimensional (l2 + l 2 + l 2 + 32 = 12). 

Finally, let us consider the isomorphous groups O and Td. The group 
Td is obtained from the group T by adding reflections ad in planes each of 
which passes through two axes of the third order. A base function of the 
unit representation A of the group T may be symmetric or antisymmetric 
with respect to these reflections (which all belong to one class), and this 
gives two one-dimensional representations of the group Td. Functions 
multiplied by e or €2 under a rotation about an axis of the third order (the 

-f For the point group CH we can, for example, take as the functions ψ the functions eik^y 
k = 1, 2, ..., w, where <f> is the angle of rotation about the axis, measured from some fixed direction. 

X These functions may, for example, be taken as ψι = e1*, ψ>2 = e-**. On reflection in a 
vertical plane, φ changes sign. 
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basis of the complex conjugate representations E of the group T) change into 
each other on reflection in a plane passing through this axis, so that one 
two-dimensional representation is obtained. Finally, of three base functions 
of the representation F of the group Γ, one is transformed into itself on 
reflection (and can either remain unaltered or change sign), while the other 
two change into each other. Thus we have altogether two one-dimensional 
representations, one two-dimensional and two three-dimensional.f 

The representations of the remaining point groups in which we are inter­
ested can be obtained immediately from those already given, if we notice 
that the remaining groups are direct products of those already considered 
with the group Ci (or Cs) : 

D3d = D3xCt 
D«n = D.xC, 
Th = TxCi 
Oh = OxCi 

Each of these direct products has twice as many irreducible representations 
as the original group, half of them being symmetric (denoted by the suffix g) 
and the other half antisymmetric (suffix u) with respect to inversion. The 
characters of these representations are obtained from those of the representa­
tions of the original group by multiplying by ± 1 (in accordance with the 
rule (94.24)). Thus, for instance, we have for the group Dsa the repre­
sentations : 

D3„ 

Alg 

A2g 

Ea 

A\u 

^ 2 u 

E» 

E 

1 
1 
2 
1 
1 
2 

2C, 

1 
1 

- 1 
1 
1 

- 1 

3Z72 

1 
- 1 

0 
1 

- 1 
0 

I 

1 
1 
2 

- 1 
- 1 
- 2 

2S9 

— 1 

— 1 

— 1 

3σα 

1 
- 1 

0 
- 1 

1 
0 

§96. Irreducible representations and the classification of terms 
The quantum-mechanical applications of group theory are based on the 

fact that the Schrödinger's equation for a physical system (an atom or 
molecule) is invariant with respect to symmetry transformations of the 

f Irreducible representations of higher dimension (4 and 5) occur in the icosahedron 
groups. 

^3Λ = CzX>Cs 

Cih = C^xCi 
Ceh = C6xCt-

D2h = D2xCi 
D,h = DtXCt 
*̂ 6 = CzXCi 
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system.f It follows at once from this that, on applying the elements of a group 
to a function satisfying Schrodinger's equation for some value of the energy 
(an eigenvalue), we must again obtain solutions of the same equation for the 
same value of the energy. In other words, under a symmetry transformation 
the wave functions of the stationary states of the system belonging to a given 
energy level transform into linear combinations of one another, i.e. they give 
some representation of the group. An important fact is that this representa­
tion is irreducible. For functions which are invariably transformed into linear 
combinations of themselves under symmetry transformations must belong 
to the same energy level ; the equality of the eigenvalues of the energy cor­
responding to several groups of functions (into which the basis of a reducible 
representation can be divided), which are not transformed into combinations 
of one another, would be an improbable coincidence.\ 

Thus, to each energy level of the system, there corresponds some irreduc­
ible representation of its symmetry group. The dimension of this represen­
tation determines the degree of degeneracy of the level concerned, i.e. the 
number of different states with the energy in question. The fixing of the 
irreducible representation determines all the symmetry properties of the 
given state, i.e. its behaviour with respect to the various symmetry trans­
formations. 

Irreducible representations of dimension greater than one are found only 
in groups containing non-commuting elements; Abelian groups have only 
one-dimensional irreducible representations. It is apposite to recall here that 
the relation between degeneracy and the presence of operators which do not 
commute with one another (but do commute with the Hamiltonian) has 
already been found above from considerations unrelated to group theory 
(§10). 

The following important reservation should be made regarding all these 
statements. As has already been pointed out (§18), the symmetry (valid in 
the absence of a magnetic field) with respect to a change in the sign of the 
time has, in quantum mechanics, the result that complex conjugate wave 
functions must belong to the same eigenvalue of the energy. Hence it follows 
that, if some set of functions and the set of complex conjugate functions give 
different (non-equivalent) irreducible representations of a group, these two 
complex conjugate representations must be regarded as forming together a 
single "physically irreducible" representation of twice the dimension. 
This will be assumed below. In the preceding section we had examples of 
such representations. Thus the group C3 has only one-dimensional repre­
sentations; however, two of these are complex conjugates, and correspond 
physically to doubly degenerate energy levels. (In the presence of a magnetic 
field there is no symmetry with respect to a change in the sign of the time, 

t The methods of group theory were first applied in quantum mechanics by E. P. Wigner 
(1926). 

% Provided that there is no special reason for this. Reference may be made here to the 
4'accidental" degeneracy that arises because the Hamiltonian of a system can have a higher 
symmetry than the purely geometrical symmetry considered in the present chapter (see the 
end of §36). 
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and hence complex conjugate representations correspond to different energy 
levels.)! 

Let us suppose that a physical system is subjected to the action of some 
perturbation (i.e. the system is placed in an external field). The question 
arises to what extent the perturbation can result in a splitting of the degener­
ate levels. The external field has itself a certain symmetry. J If this symmetry 
is the same as or higher || than that of the unperturbed system, the symmetry 
of the perturbed Hamiltonian tì = tì0+Y is the same as the symmetry 
of the unperturbed operator tì0. It is clear that, in this case, no splitting 
of the degenerate levels occurs. If, however, the symmetry of the pertur­
bation is lower than that of the unperturbed system, then the symmetry of 
the Hamiltonian tì is the same as that of the perturbation Ϋ. The wave 
functions which gave an irreducible representation of the symmetry group 
of the operator tì0 will also give a representation of the symmetry group 
of the perturbed operator tì, but this representation may be reducible, and 
this means that the degenerate level is split. 

We shall show by means of an example how the mathematical techniques 
of group theory enable us to solve the problem of the splitting of any given 
level. 

Let the unperturbed system have symmetry Td, and let us consider a 
triply degenerate level corresponding to the irreducible representation F2 
of this group. The characters of this representation are 

E 8C3 3C2 βσα 6S4 

3 Ô ~\ ϊ ^ΊΓ 

Let us assume that the system is subjected to the action of a perturbation 
with symmetry Csv (with the third-order axis coinciding with one of those of 
the group Td). The three wave functions of the degenerate level give a 
representation of the group C%v (which is a sub-group of the group Td), and 
the characters of this representation are equal to those of the same elements 
in the original representation of the group Td, i-e. 

E 2C3 3σν 

3 Ö Γ 

This representation, however, is reducible. Knowing the characters of the 

f Strictly speaking, the fact that the characters are real (i.e. that the complex conjugate 
representations are equivalent) is not a sufficient condition for the possibility of choosing real 
base functions of the representation of the group. For irreducible representations of point 
groups, however, it is sufficient (though not for the "double" point groups; see §99). 

} For example, in the case of the energy levels of the d a n d / shells of ions in a crystal lattice 
which interact slightly with the surrounding atoms, the perturbation (the external field) is the 
field acting on an ion due to the other atoms. 

|| if a symmetry group H is a sub-group of the group G, we say that H corresponds to a lower 
symmetry and G to a higher symmetry. It is evident that the symmetry of the sum of two ex­
pressions, one of which has the symmetry of G and the other that of H, is the lower symmetry, 
that of H. 
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irreducible representations of the group 63^, it is easy to decompose it into 
irreducible parts, using the general rule (94.16). Thus we find that it consists 
of the representations A\ and E of the group C%v. The triply degenerate 
level F2 is therefore split into one non-degenerate level A\ and one doubly 
degenerate level E. If the same system is subjected to the action of a per­
turbation of symmetry C2v, which is also a sub-group of the group Td) then 
the wave functions of the same level F2 give a representation with characters 

E L>2 Gy G'V 

3 ~l ϊ Γ 
Decomposing this into irreducible parts, we find that it contains the repre­
sentations A\> Bi, 2?2- Thus in this case the level is completely split into three 
non-degenerate levels. 

§97. Selection rules for matrix elements 
Group theory not only enables us to carry out a classification of the terms 

of any symmetrical physical system, but also gives us a simple method of 
finding the selection rules for the matrix elements of the various quantities 
which characterize the system. 

This method is based on the following general theorem. Let ψ^Λ) be one 
of the base functions of an irreducible (non-unit) representation of a symmetry 
group. Then the integral of this function over all spacef vanishes identically: 

JV/«>d? =0. (97.1) 

The proof is based on the evident fact that the integral over all space is 
invariant with respect to any transformation of the coordinate system, 
including any symmetry transformation. Hence 

J φΡ dq=j ΟφΜ àq = j Σ GW<^W di. 

We sum this equation over all the elements of the group. The integral on 
the left is simply multiplied by g> the order of the group, and we have 

However, for any non-unit irreducible representation we have identically 

E G / ) = 0 ; o 
this is a particular case of the orthogonality relations (94.7), when one of 
the irreducible representations is the unit representation. This proves the 
theorem. 

t That is, the configuration space of the physical system concerned. 
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If φ is a function belonging to the basis of some reducible representation 

of a group, the integral J φ dq will be zero except when this representation 
contains the unit representation. This theorem is a direct consequence of 
the previous one. 

The matrix elements of a physical quantity / are given by the integrals 

(ßk\ f |cet} = j φ^/φ^ dq, (97.2) 

where the indices a and β distinguish different energy levels of the system, 
and the suffixes i, k denumerate wave functions belonging to the same 
degenerate level.f We denote the irreducible representations of the symmetry 
group of the system concerned that are given by the functions φι^ and 
φ^ by the symbols D^ and D^\ and by Df the representation of the same 
group that corresponds to the symmetry of the quantity/; this representation 
depends on the tensor character of/. For example, if/ is a true scalar, then 
its operator / i s invariant under all the symmetry transformations, and Df is 
the unit representation. The same occurs for a pseudoscalar quantity if 
the group contains only axes of symmetry, but if there are also reflections, 
Df is not the unit representation, though its dimension is unity. If / is a 
vector, then Df is a representation given by the three vector components 
that are transformed into combinations of each other; this representation is 
in general different for polar and axial vectors. 

The products φκ^/φί^ give the representation that is the direct product 
Z)^) xDfxDW. The matrix elements are non-zero if this representation 
contains the unit representation or, equivalently, if the direct product 
Z)(0) x Z)(a) contains Df. In practice, it is more convenient to decompose 
into irreducible parts the product ZMa) xZ)/; this gives us immediately all 
the types D^ of states for transitions into which (from a state of the type 
D<a)) the matrix elements are not zero. 

In the simplest case of a scalar quantity, for which Df is the unit representa­
tion, it then follows immediately that the matrix elements are non-zero only 
for transitions between states of the same type : the direct product DW x D^ 
of two different irreducible representations does not contain the unit 
representation, but the latter is always present in the direct product of an 
irreducible representation with itself. This is most general statement of a 
theorem of which particular cases have already been met with. 

The matrix elements diagonal with respect to energy, i.e. those for transi­
tions between states belonging to the same term (as opposed to transitions 
between states belonging to two different terms of the same type), need special 
treatment. In this case we have only one set of functions </α*α), 02(α)> ··· , not 
two different ones. The selection rules here are found by different methods, 
depending on the behaviour of the quantity / under time reversal. 

f Since the base functions can be taken as real when "physically irreducible" represen­
tations are used, we do not distinguish in (97.2) between the wave functions and their complex 
conjugates. 
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Let us consider a state described by a wave function of the form φ = 

Σ cn/jiW. The mean value of/ in this state is given by the sum 

/ = g<*»c,<«*|/|«>. 
In the state with the complex conjugate wave function φ* = Σ ^*ψι(α\ 
we have 

/ = § W <a*l/l<»> 
= freiet* <<w|/!<**>· 

I f / is invariant under time reversal, the two states not only belong to the 
same energy level but must also have the same value of/. Since the co­
efficients Ci are arbitrary, this means that 

<α*|/ |αί> = <αί | / |α*>· 

Hence, in order to find the selection rules, we must consider not the direct 
product DW x ZMa) as a whole, but only its symmetric part [ZMa>2] ; there are 
non-zero matrix elements if [ZM«)2] contains D/.f 

If, however, / changes sign under time reversal, the change from φ to ψ* 
has to be accompanied by a change in the sign of/. Hence we find by the 
same method that 

< α * | / | « > = - < « | / | α * > . 

In this case, therefore, the selection rules are determined by the decom­
position of the antisymmetric part of the direct product, {ZMa>2}. 

P R O B L E M S 

PROBLEM 1. Find the selection rules for the matrix elements of the electric and magnetic 
dipole moments d and μ when symmetry O is present. 

SOLUTION. The group O includes no reflections; the polar vector d and the axial vector μ 
are therefore transformed by the same irreducible representation, F\. The decompositions of 
the direct products of F\ with the other representations of the group O are 

FlxAl = Flt F,xA2 =F2, F,xE = F^F» 
F.xF, = Ai+E+Fi+F» F,xF2 = A%+E+Fx+Ft. 

Hence the non-zero non-diagonal (with respect to energy) matrix elements are those for the 
transitions 

Fx<-* Au E, Flt F2; F2*-+ A2, E, F2. 

t The product [Z)<a)2] always contains the unit representation, so that the diagonal elements 
(and non-diagonal elements between states of the same type) are non-zero for a scalar quantity. 

u 
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The symmetric and antisymmetric products of the irreducible representations of the group O are 

[A?] = [A22] = Alt [E*] = Ai + E, [Fi2] = [F2
2] = ,4i + £ + F2, 

{£2} = A2, {Fi2} = {F22} = F L 

The symmetric products do not contain Fi ; hence there are no diagonal (with respect to energy) 
matrix elements of the vector d (which is invariant under time reversal). The magnetic moment, 
which changes sign under time reversal, has diagonal matrix elements for the states F\ and F2. 

PROBLEM 2. The same as Problem 1, but for symmetry DM-

SOLUTION. The vectors d and μ have different transformation laws in the group D^'-

dx, dyr^EUi dz~A2u, 
μχ, fXyr^Eg, ^Z^A2g\ 

here and in the Problems below, the symbol ~ stands for the words "is transformed by the 
representation". We have 

EuxAlg = EuxA2g = Eu, EuxAlu = EuxA2u = Egi 

EuxEu = Alg+A2g+Eg, EuxEg = Alu+Atu+Eu. 

Hence the non-diagonal matrix elements of dx, dy are non-zero for the transitions Eu+-+A\g, 
A2g, Eg; Eg+->Aiu, A211. In the same way we find the selection rules 

for dz\ A\g^Aiu\ Aogir+Aiu', Eg*-+Eu; 
f o r /X.c, py'. Eg<r->Alg, A2g} Eg\ EU*-+AlU} A-2u> EU\ 

for/uz: Aig<->A2g\ A\u+-*A2u\ Eg<-+Eg', EU*->EU. 

The symmetric and antisymmetric products of the irreducible representations of the group 
Dsd are 

[Alg*] = [Alu*\ = [A2g
2] = [A2uz] = Alg, 

[Eg*] = [Ett*] = Eg + Alg} {Eg*} = {Eu*} = A2g. 

Hence we see that there are no diagonal (with respect to energy) matrix elements for any of the 
components d; for the vector μ, there are diagonal matrix elements of μζ for transitions between 
states belonging to a degenerate level of the type Eg or Eu. 

PROBLEM 3. Find the selection rules for the matrix elements of the electric quadrupole 
moment tensor Que when symmetry O is present. 

SOLUTION. The components of the tensor Qa (a symmetrical tensor with the sum Qa equal 
to zero) with respect to group O are transformed by the laws 

Qxu> Q*z> Qvz~F2, Qrx+eQyy+e2QZZi Qxx + *2Qyy + eQzz~E 
( c = eW/8). 

Decomposing the direct products of F 2 and E with all the representations of the group, we find 
the selection rules for the non-diagonal matrix elements: 

for Qxy, Qxz, Qyz: F^A2, F, Fu F2; F2~Alt E, Fu F2\ 
for QXXt Qyy, Qzz: E~AU A2, E; F i ~ F i , F 2 ; F2~F2. 

The diagonal matrix elements exist (as we see from (2)) in the following states: 
iorQxyt Qxz, QyZ: Fly F2, 
for Qxx, Qyy, Qzz\ F, Fi, F2. 

PROBLEM 4. The same as Problem 3, but for symmetry D^. 

SOLUTION. The transformation laws of the components Que with respect to the group 
DM are 

Qzz~A\g\ Qxx-Qyy, Q.vy~Eg\ Qxz, Qyz~Eg. 

(2) 

(3) 

(4) 
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Qzz behaves as a scalar. Decomposing the direct products of E9 with all the representations of 
the group, we find the selection rules for the non-diagonal matrix elements of the remaining 
components O/A·: 

E(J<r+A\g, A>(J, Eg\ EU<r-*AlU, AoUy EU. 

The diagonal elements are non-zero (as we see from (4)) only for the states Eg and Eu. 

§98. Continuous groups 
As well as the finite point groups enumerated in §93, there exist also what 

are called continuous point groups, having an infinite number of elements. 
These are the groups of axial and spherical symmetry. 

The simplest axial symmetry group is the group Cœ, which contains rota­
tions C(<f>) through any angle φ about the axis of symmetry ; this is called the 
two-dimensional rotation group. It may be regarded as the limiting case of 
the groups Cn as n -> oo. Similarly, as limiting cases of the groups Cnh> 
Cnv> Dn, Dnhwe obtain the continuous groups Cnh, Cnv, D œ , Dœh. 

A molecule has axial symmetry only if it consists of atoms lying in a straight 
line. If it meets this condition, but is asymmetric about its midpoint, its 
point group will be the group C ^ , which, besides rotations about the axis, 
contains also reflections σν in any plane passing through the axis. If, on 
the other hand, the molecule is symmetrical about its midpoint, its point 
group will beD0 0 Ä = CaovxCi. The groups C^C^^D^ cannot appear as 
the symmetry groups of a molecule. 

The group of complete spherical symmetry contains rotations through any 
angle about any axis passing through the centre, and reflections in any plane 
passing through the centre; this group, which we shall denote by Khy is 
the symmetry group of a single atom. It contains as a sub-group the group 
K of all spatial rotations (called the three-dimensional rotation group, or simply 
the rotation group). The group Kh can be obtained from the group K by 
adding a centre of symmetry (Kh = K χ C{). 

The elements of a continuous point group may be distinguished by one 
or more parameters which take a continuous range of values. Thus, in the 
rotation group, the parameters might be the three Eulerian angles, which 
define a rotation of the coordinates. 

The general properties of finite groups described in §92, and the concepts 
appertaining to them (sub-groups, conjugate elements, classes, etc.), can be 
at once generalized to continuous groups. Of course, the statements which 
directly concern the order of the group (for instance, that the order of a sub­
group divides the order of the group) are no longer meaningful. 

In the group Coov all planes of symmetry are equivalent, so that all reflec­
tions συ form a single class with a continuous series of elements ; the axis of 
symmetry is bilateral, so that there is a continuous series of classes, each 
containing two elements C(±<£)· The classes of the group D œ A are obtained 
at once from those of the group C^,,, since Dooh = C^xC^ 

In the rotation group Ky all axes are equivalent and bilateral; hence the 
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classes of this group are rotations through an angle of fixed absolute magnitude 
|^| about any axis. The classes of the group Kh are obtained at once from 
those of the group K. 

The concept of representations, reducible and irreducible, can also be 
immediately generalized to continuous groups. Each irreducible representa­
tion contains an infinite sequence of matrices, but the number of base 
functions transformed into combinations of one another (the dimension of 
the representation) is finite. These functions may always be chosen so as to 
make the representation unitary. The number of different irreducible 
representations of a continuous group is infinite, but they form a discrete 
sequence, i.e. they can be numbered successively. For the matrix elements 
and characters of these representations there are orthogonality relations which 
generalize the corresponding ones for finite groups. Instead of (94.9), we 
now have 

j GikWGlm(»)*àTG = jKßhihm j drG) (98.1) 
Ja 

and instead of (94.10) 

/ X ( a ) ( W > ( G ) * drG = 8aß | àrG. (98.2) 

The integration in these formulae is what is called an invariant integration 
over the group ; the element OTQ is expressed in terms of the parameters of 
the group and their differentials in such a way as to remain an element when 
subjected to any transformation in the group.f For example, in the rotation 
group we can take άτα — sin ß da dß dy, where a, ß and y are the Eulerian 
angles, which define a rotation of the system of coordinates (§58) ; in this case, 
fdTC = 87r2. 

We have already found, in essence, the irreducible representations of the 
three-dimensional rotation group (without using the terminology of group 
theory), when determining the eigenvalues and eigenfunctions of the total 
angular momentum. For the angular momentum component operators are 
(apart from a constant factor) the operators of infinitely small rotations,! 
and the eigenvalues of the angular momentum characterize the behaviour of 
the wave functions with respect to spatial rotations. To a value j of the 
angular momentum there correspond 2 / + 1 different eigenfunctions φ^, 
differing in the values of the component m of the angular momentum and 
all belonging to one (2/+ l)-fold degenerate energy level. Under rotations 
of the coordinate system, these functions are transformed into linear combi­
nations of themselves, and thus give irreducible representations of the 

f The statements made here about the properties of irreducible representations of con­
tinuous groups are valid only if the integrals (98.1) and (98.2) converge; in particular, the 
"volume of the group" J UTG must be finite. This condition is satisfied for continuous point 
groups (but not, for instance, for the Lorentz group which occurs in the relativistic theory). 

X In mathematical terms, these operators are the generators of the rotation group. 
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rotation group. Thus, from the group-theory point of view, the numbers j 
number the irreducible representations of the rotation group, and one 
(2/ + l)-dimensional representation corresponds to each; . The number / 
takes integral and half-integral values, so that the dimension 2/ + 1 of the 
representations takes all the integral values 1, 2, 3, ... . 

The base functions of these representations have been, in essence, 
investigated in §§56 and 57, and the matrices of the representations have 
been found in §58. The basis of a representation of given; is formed by 
the 2j+1 independent components of a symmetrical spinor of rank 2/ (which 
are equivalent to the set of 2 /+1 functions </^w). 

The irreducible representations of the rotation group which correspond 
to half-integral values of j are distinguished by an important property. 
Under a rotation through 2π, the base functions of the representations 
change sign (being components of a spinor of odd rank). Since, however, 
a rotation through 2π is the same as the unit element of the group, we 
reach the result that representations with half-integral j are, as we say, 
two-valued; to each element of the group (a rotation through an angle 
<f>t 0 ^ φ ^ 2π> about some axis) there correspond in such a representation 
not one but two matrices, with characters differing in sign.f 

An isolated atom has, as we have already remarked, the symmetry Kh 
= KxCfr Hence, from the group-theory point of view, there corresponds 
to each term of the atom some irreducible representation of the rotation 
group K (determining the value of the total angular momentum J of the atom) 
and an irreducible representation of the group Ci (determining the parity 
of the state).J 

When the atom is placed in an external electric field, its energy levels are 
split. The number of different levels resulting and the symmetry of the 
corresponding states can be determined by the method described in §96. 
It is necessary to decompose the (27+1)-dimensional representation of the 
symmetry group of the external field (given by the functions I/JJM) into 
irreducible representations of this group. This requires a knowledge of the 
characters of the representation given by the functions 0 J M · 

Since the characters of the irreducible representations of elements of one 
class are the same, it is sufficient to consider rotations about the #-axis. 
By a rotation through an angle φ about this axis the wave functions I\SJM 

t It must be mentioned that two-valued representations of a group are not representations 
in the true sense of the word, since they are not given by one-valued base functions; see 
also §99. 

X Moreover, the Hamiltonian of the atom is invariant with respect to interchanges of the 
electrons. In the non-relativistic approximation, the coordinate and spin wave functions are 
separable, and we can speak of representations of the permutation group that are given by the 
coordinate functions. If the irreducible representation of the permutation group is given, the 
total spin S of the atom is determined (§63). When the relativistic interactions are taken into 
account, however, the separation of the wave functions into coordinate and spin parts is not 
possible. The symmetry with respect to simultaneous interchange of the coordinates and 
spins of the particles does not characterize the term, since Pauli's principle admits only those 
total wave functions which are antisymmetric with respect to all the electrons. This is in 
accordance with the fact that, when the relativistic interactions are taken into account, the 
spin is not, strictly speaking, conserved; only the total angular momentum/ is conserved. 
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are, as we know, multiplied by eiM$, where M is the component of the angular 
momentum along this axis. The transformation matrix for the functions 
$JM will therefore be diagonal, with character 

•^ eUJ + l )φ _ ρ-ΐΰφ 

rr^-J e**-l 

orf 

x(J)(<t>) = . ' · (98.3) 
sin|<£> 

With respect to inversion 7, all the functions \\ÌJM with different M behave 
in the same way, being multiplied by + 1 or — 1 according as the state of the 
atom is even or odd. Hence the character 

X{J)(I)= ±(27+1). (98.4) 

Finally, the characters corresponding to reflection in a plane σ and rotary 
reflection through an angle φ are found by WTiting these symmetry trans­
formations as 

G = IC2, S&)= IC(n + </>). 

Let us pause to consider also the irreducible representations of the 
axial symmetry group C œ r This problem has, in essence, been solved when 
we ascertained the classification of the electron terms of a diatomic molecule 
having this symmetry Cœv (i.e. when the two atoms are different). To the 
terms 0+ and 0~ (with Ω = 0) there correspond two one-dimensional 
irreducible representations : the unit representation A\ and the representation 
A29 in which the base function is invariant under all rotations and changes 
sign under reflections in planes aVy while to the doubly degenerate terms with 
Ω = 1, 2, ... there correspond two-dimensional representations denoted by 
E\y #2, · · . . Under a rotation through an angle φ about the axis, the base 
functions are multiplied by e±iCi^, while on reflection in planes συ they change 
into each other. The characters of these representations are 

(98.5) 

CooV 
Αχ 
A2 
Ek 

E 
1 
1 
2 

20(φ) 
1 
1 

2 c o s k<t> 

ccav 

1 
- 1 

0 

t To avoid misunderstanding, it should be emphasized that this formula corresponds to a 
parametrization of the group elements other than that by the Eulerian angles: the trans­
formation is specified by the direction of the axis of rotation and the angle φ of the rotation 
about the axis. It can be shown that, with this parametrization, the integration in (98.2), for 
example, is to be taken over 2(1 —cos φ)άφ do, where do is the element of solid angle for the 
direction of the axis of rotation. 
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The irreducible representations of the group Dooh= C00VxCi are ob­

tained at once from those of the group Cœ v (and correspond to the classifi­
cation of the terms of a diatomic molecule composed of like nuclei). 

If we take half-integral values for Ω, the functions e±iQi give two-valued 
irreducible representations of the group Cœ v, corresponding to the terms of 
the molecule having half-integral spin.f 

§99. Two-valued representations of finite point groups 
To the states of a system with half-integral spin (and therefore half-

integral total angular momentum) there correspond two-valued represen­
tations of the point symmetry group of the system. This is a general property 
of spinors, and therefore holds for both continuous and finite point groups. 
The necessity thus arises of finding the two-valued irreducible representa­
tions of finite point groups. 

As we have already remarked, the two-valued representations are not 
really true representations of a group. In particular, the relations discussed 
in §94 do not apply to them, and where all irreducible representations were 
considered in these relations (for example, in the relation (94.17) for the sum 
of the squared dimensions of the irreducible representations), only the true 
one-valued representations were meant. 

To find the two-valued representations, it is convenient to employ the 
following artifice (H. A. Bethe 1929). We introduce, in a purely formal 
manner, the concept of a new element of the group (denoted by Q) ; this is a 
rotation through an angle of 2π about an arbitrary axis, and is not the unit 
element, but gives the latter when applied twice : Q2 = E. Accordingly, 
rotations Cn about the axes of symmetry of the nth order will give identical 
transformations only after being applied 2n times (and not n times) : 

Cn
n = Q, Cn

2» = E. (99.1) 

The inversion / , being an element which commutes with all rotations, 
must give E as before on being applied twice. A twofold reflection in a plane, 
however, gives Q, not E: 

σ2 = ρ, σ4 = E; (99.2) 

this follows, since the reflection can be written in the form oh = 7C2. As a 

t Contrary to the result for the three-dimensional rotation group, it would here be possible, 
by a suitable choice of fractional values of Ω, to obtain not only one-valued and two-valued 
representations, but also those of three or more values. However, the physically possible 
eigenvalues of the angular momentum, which is the operator of an infinitely small rotation, 
are determined by the representations of the aforementioned three-dimensional rotation 
group. Hence the three (or more)-valued representations of the two-dimensional rotation 
group (and of any finite symmetry group), though mathematically determinate, are without 
physical significance. 
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result we obtain a set of elements forming some fictitious point symmetry 
group, whose order is twice that of the original group; such groups we shall 
call double point groups. The two-valued representations of the actual point 
group will clearly be one-valued (i.e. true) representations of the correspond­
ing double group, so that they can be found by the usual methods. 

The number of classes in the double group is greater than in the original 
group (but not, in general, twice as great). The element Q commutes with all 
the other elements of the group,f and hence always forms a class by itself. If 
the axis of symmetry is bilateral, the elements Cn

k and Cn
2n~k = QCn

n~k are 
conjugate in the double group. Hence, when axes of the second order are 
present, the distribution of the elements among classes depends also on 
whether these axes are bilateral (in ordinary point groups this is unimportant, 
since C2 is the same as the opposite rotation C2

_1). 
Thus, for instance, in the group T the axes of the second order are equiva­

lent, and each of them is bilateral, while the axes of the third order are equiva­
lent but not bilateral. Hence the 24 elements of the double groupJ T' are 
distributed in seven classes : E, Q, the class of three rocations C2 and three 
C2Qy and the classes 4C3, 4C3

2, 4C3£), 4C3
20. 

The irreducible representations of a double point group include, firstly, 
representations which are the same as the one-valued representations of the 
simple group (a unit matrix corresponding to both Q and E)\ secondly, 
the two-valued representations of the simple group, a negative unit matrix 
corresponding to Q. It is these latter representations in which we are now 
interested. 

The double groups Cn' (n = 1, 2, 3, 4, 6) and 5 / , like the corresponding 
simple groups, are cyclic. || All their irreducible representations are one-
dimensional, and can be found without difficulty as shown in §95. 

The irreducible representations of the groups D n ' (or Cnv\ which are 
isomorphous with them) can be found by the same method as for the cor­
responding simple groups. These representations are given by functions 
of the form *±<Af#, where φ is the angle of rotation about an axis of the nth 
order, and k is given half-integral values (the integral values correspond to 
the ordinary one-valued representations). Rotations about horizontal axes 
of the second order change these functions into one another, while the rota­
tion Cn multiplies them by e±2nik/n. 

It is a little less easy to find the representations of the double cubic groups. 
The 24 elements of the group T are divided among seven classes. Hence 
there are altogether seven irreducible representations, of which four are 
the same as those of the simple group T. The sum of the squared dimensions 
of the remaining three representations must be 12, and hence we find that 
they are all two-dimensional. Since the elements C2 and C2Q belong to the 

j" This is obvious for rotations and inversion ; for a reflection in a plane, it follows since the 
reflection can be represented as the product of an inversion and a rotation. 

X We distinguish the double groups by primes to the symbols for the ordinary groups. 
|| The groups SV = CY, SQ' = C3/ , however, which contain the inversion /, are Abelian 

but not cyclic. 
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T A B L E 8 

Two-valued representations of point groups 
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same class, x(C2) = x(C2Q) = — x(C2), whence we conclude that x(C2) = 0 
in all three representations. Next, at least one of the three representations 
must be real, since complex representations can occur only in conjugate 
pairs. Let us consider this representation, and suppose that the matrix of 
the element C3 is brought to diagonal form, with diagonal elements alf a^. 
Since C3

3 = Q> G^ = a2
z = — 1. In order that x(C3) = ^ + ^ may be real, 

we must take a± = eni/z, a2 = e~ni/z. Hence we find that x(C3) = 1, x(C3
a) 

= a^+a^ = — 1. Thus one of the required representations is obtained. By 
comparing its direct products with the two complex conjugate one-dimensional 
representations of the group Γ, we find the other two representations. 

By means of similar arguments, which we shall not pause to give here, we 
may find the representations of the group O'. Table 8 gives the characters 
of the representations of the double groups mentioned above. Only those 
representations are shown which correspond to two-valued representations 
of the ordinary groups. The isomorphous double groups have the same 
representations. 

The remaining point groups are isomorphous with those we have con­
sidered, or else are obtained by direct multiplication of the latter by the group 
Cif so that their representations do not need to be specially calculated. 

For the same reasons as for ordinary representations, two complex con­
jugate two-valued representations must be regarded as one physically 
irreducible representation of twice the dimension. It is necessary to pair 
one-dimensional two-valued representations even when they have real 
characters. For (see §60) in systems with half-integral spin, complex 
conjugate wave functions are linearly independent. Hence, if we have a 
two-valued one-dimensional representation! with real characters (given 
by some function φ), then, although the complex conjugate function i/f* is 
transformed by an equivalent representation, we can nevertheless see that φ 
and ψ* are linearly independent. Since, on the other hand, the complex 
conjugate wave functions must belong to the same energy level, we see that 
in physical applications this representation must be doubled. 

The whole of the discussion in §97 concerning the method of finding the 
selection rules for the matrix elements of various physical quantities / 
remains valid for states of a system with half-integral spin, except as regards 
the matrix elements diagonal with respect to energy. On repeating the 
analysis at the end of §97 but with formulae (60.2) and (60.3), we find that, 
if the quantity / i s even or odd under time reversal, we must use, in finding 
the selection rules, respectively the antisymmetric {ZX«)2} and symmetric 
[Z)<*)2] products of the representation ZX«) with itself; this is the opposite 
of the rule stated in §97 for systems with integral spin.J 

f Such representations are found in the group Cn' for odd n\ the characters are x(Cn
k) = 

( - 1 K 
X In connection with the application of these rules, it may be noted that for two-valued 

representations the unit representation is in the antisymmetric, not the symmetric, product 
of the representation with itself. For a two-valued representation with dimension 2, the 
product {Z)(a)2} is just the unit representation. 
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P R O B L E M 

Determine how the levels of an atom (with given values of the total angular momentum J) 
are split when it is placed in a field having the cubic symmetry! O. 

SOLUTION. The wave functions of the states of an atom with angular momentum / and 
various values Mj give a (2/-}-l)-dimensional reducible representation of the group O, with 
characters determined by the formula (98.3). Decomposing this representation into irreduc­
ible parts (one-valued for integral / and two-valued for half-integral / ) , we at once find the 
required splitting (cf. §96). We shall list the irreducible parts of the representations corres­
ponding to the first few values of / : 

7 = o 
1/2 

1 
3/2 

2 
5/2 

3 

A1 

Ei 

Fi 

σ 
E+F2 

E2'+G' 
A2+F1+F2 

t For example, an atom in a crystal lattice. The presence or absence of a centre of symmetry in 
the symmetry group of the external field is immaterial to this problem, since the behaviour of the 
wave function on inversion (the parity of the level) is unrelated to the angular momentum/. 




