
CHAPTER VII 

THE QUASI-CLASSICAL CASE 

§46. The wave function in the quasi-classical case 
IF the de Broglie wavelengths of particles are small in comparison with the 
characteristic dimensions L which determine the conditions of a given 
problem, then the properties of the system are close to being classical, just as 
wave optics passes into geometrical optics as the wavelength tends to zero. 

Let us now investigate more closely the properties of quasi-classical 
systems. To do this, we make in Schrödinger's equation 

the substitution 
φ = «̂/Α)σ# (46.1) 

For the function σ we obtain the equation 

Since the system is supposed almost classical in its properties, we seek σ in 
the form of a series : 

σ = σ0+φΙ>)°ι+ΦΙ*)2°2+ - > (46.3) 

expanded in powers of h. 
We begin by considering the simplest case, that of one-dimensional motion 

of a single particle. Equation (46.2) then reduces to 

ν'ψτη-ίΗν"βηι = £ - U(x)t (46.4) 

where the prime denotes differentiation with respect to the coordinate x. 
In the first approximation we write σ = σ0 and omit from the equation the 

term containing h : 

σ0'2/2τη =E-U(x). 
Hence we find 

σ0 = ± j y/{2m\E- U(x)]} ax. 
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The integrand is simply the classical momentum p(x) of the particle, expres­
sed as a function of the coordinate. Defining the function p{x) with the + 
sign in front of the radical, we have 

*o = ± / / > d * , p = y/[2tn{E-U)], (46.5) 

as we should expect from the limiting expression (6.1) for the wave function.f 
The approximation made in equation (46.4) is legitimate only if the second 
term on the left-hand side is small compared with the first, i.e. we must have 
Α|σ"/σ'2| <ξ 1 or 

|d(A/a')/d*| <ξ 1. 

In the first approximation we have, according to (46.5), σ' =p, so that the 
condition obtained can be written 

|α(λ/2π)/ά*| < 1, (46.6) 

where λ(χ) = 2^/p(x) is the de Broglie wavelength of the particle, expressed 
as a function of x by means of the classical function p(x). Thus we have 
obtained a quantitative quasi-classicality condition: the wavelength of the 
particle must vary only slightly over distances of the order of itself. The 
formulae here derived are not applicable in regions of space where this condi­
tion is not satisfied. 

The condition (46.6) can be written in another form by noticing that 

dp d mdU mF 
-f = V[2m(E-U)] = _ - _ = _ , 
ax ax p ax p 

where F = —dU/dx is the classical force acting on the particle in the external 
field. In terms of this force we find 

mh\F\]p* <̂  1. (46.7) 

It is seen from this that the quasi-classical approximation becomes inapplic­
able if the momentum of the particle is too small. In particular, it is clearly 
inapplicable near turning points^ i.e. near points where the particle, according 
to classical mechanics, would stop and begin to move in the opposite direction. 
These points are given by the equation p{x) = 0, i.e. E = U(x). As p -> 0, 
the de Broglie wavelength tends to infinity, and hence cannot possibly be 
supposed small. 

It must be emphasized, however, that the condition (46.6) or (46.7) alone 
may be insufficient for the quasi-classical approximation to be valid. The 
reason is that this condition has been derived from estimates of the various 
terms in the differential equation (46.4), the term omitted containing a higher 
derivative. It would be necessary, in fact, to stipulate the smallness of the 

t As is well known, J p ax is the time-independent part of the action. The total mechanical 
action S of a particle is S = —Et± j p dx. The term —Et is absent from σ0, since we are 
considering a time-independent wave function ψ. 
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subsequent expansion terms in the solution of this equation, and this need 
not be ensured by the smallness of the term omitted. For example, if the 
solution for σ(χ) contains a term which increases almost linearly with the 
coordinate x, the smallness of the second derivative in the equation will not 
prevent this term from becoming large at sufficiently great distances. Such a 
situation occurs, in general, when the field extends to distances large in 
comparison with the characteristic length L over which it varies by an 
appreciable amount ; see the discussion of (46.11 ) below. The quasi-classical 
approximation is then invalid for investigating the behaviour of the wave 
function at large distances. 

Let us now calculate the next term in the expansion (46.3). The first-order 
terms in h in equation (46.4) give 

°oV+*°o" = 0. 
whence 

ai = —σ0'72σ0
/ = —p'/2p. 

Integrating, we find 

°i = - i log/>> (46.8) 

omitting the constant of integration. 
Substituting this expression in (46.1) and (46.3), we find the wave function 

in the form 

φ = erf*-1'2** Mp dx+ Crf-vZe-V l*]JP **. (46.9) 

The factor l/VP m t n i s function has a simple interpretation. The proba­
bility of finding the particle at a point with coordinate between x and x + dx 
is given by the square \φ\2, i.e. is essentially proportional to 1 jp. This is 
exactly what we should expect for a "quasi-classical" particle, since, in 
classical motion, the time spent by a particle in the segment ax is inversely 
proportional to the velocity (or momentum) of the particle. 

In the "classically inaccessible" parts of space, where E < U(x), the func­
tion p(x) is purely imaginary, so that the exponents are real. The general form 
of the solution of the wave equation in these regions is 

φ = -Q-e-a/h) SiP\dx + _£2-ea/h) $\P\dxt (46.10) 
V\P\ V\p\ 

It must, however, be borne in mind that the accuracy of the quasi-classical 
approximation is not such as to allow the retention in the wave function of 
exponentially small terms superimposed on exponentially large ones, and in 
this sense it is usually not permissible to retain both terms in (46.10). 

Although there is, as a rule, no need to use the higher-order terms in the 
wave function, we shall derive the next term in the expansion (46.3), with a 
view to noting some aspects of the accuracy of the quasi-classical approxi­
mation. 
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The terms of order h2 in equation (46.4) give 

whence (substituting (46.5) and (46.8) for σο and σχ) 

σ2' =ρ"Ιφ-Ζρ'ψρ\ 

Integrating (by parts in the first term) and introducing the force F = pp'/m, 
we obtain 

c2 = \mFlp*+\m* j (F2lp*) dx. 

The wave function in this approximation is of the form 

φ = #1*» = ^/Λ)σ.+σι(1-/Ασ2) 
or 

constant 

VP 
\\-\imhF\p*-\ihm^ (F2lp5) dx]e^^Sp **. (46.11) 

The occurrence of imaginary correction terms in the coefficient of the 
exponential is equivalent to the presence of a similar correction in the phase of 
the wave function, i.e. of an addition to the integral (1/Ä) j"/> dx in its exponent. 
This correction is proportional to h, i.e. is of order λ/L. 

The second and third terms in the brackets in (46.11) must be small in 
comparison with unity. For the second term, this condition is the same as 
(46.7); for the third term, an estimate of the integral gives (46.7) only if F2 

tends to zero sufficiently rapidly at distances ^ L. 

§47. Boundary conditions in the quasi-classical case 
Let x = a be a turning point, so that U(a) = E, and let U > E for all 

x > a, so that the region to the right of the turning point is classically 
inaccessible. The wave function must be damped in this region. Sufficiently 
far from the turning point, it has the form 

Ψ = r - 7 T 7 ; e x p ( - 7 | j Pdx\) 
C 

2V[p\ 
for x > ay (47.1) 

corresponding to the first term in (46.10). To the left of the turning point, 
the wave function must be represented by a real combination (46.9) of two 
quasi-classical solutions of Schrödinger's equation : 

X . X 

φ = expi - p dx\-\ expi \ p dx J for x < a. (47.2) 
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To determine the coefficients in this combination we must follow the 

variation in the wave function from positive x — a (where (47.1) holds) to 
negative x — a. In doing so, however, it is necessary to pass through a region 
near the turning point where the quasi-classical approximation is invalid, 
and the exact solution of Schrödinger's equation must be considered. For 
small \x — a\ we have 

E- U(x) « Foix-a), F0 = -[dUldx]x=a < 0; (47.3) 

that is, the problem in this region is one of movement in a homogeneous 
field. The exact solution of Schrödinger's equation for this problem has been 
found in §24, and the relation between the coefficients in (47.1) and (47.2) 
can be derived by comparison with the asymptotic forms (24.5) and (24.6) of 
this exact solution on either side of the turning point. Here it must be noted 
that (47.3) gives p(x) = \/[2mFo(x — a)]y so that the integral 

X 

lÎpdx = l-V(2mFo)(x-af/2 
n J oh 

a 

is equal to the argument of the exponential in (24.5) or the sine in (24.6). 
In this discussion it is important that the region where the expansion (47.3) 
is valid and the quasi-classical region partly overlap : if the motion is quasi-
classical in almost the whole of the field region (as we assume), then there 
exist values of \x — a\ small enough for the expansion (47.3) to be valid but 
also large enough for the quasi-classicality condition to be satisfied and for 
the asymptotic forms (24.5) and (24.6) to be applicable.! 

There is, however, another approach that is methodologically more 
instructive and does not make use of the exact solution. For this, φ(χ) must 
be formally regarded as a function of a complex variable x, and the passage 
from positive to negative x — a must be along a path which is always suffi­
ciently far from the point x = a, so that the quasi-classicality condition is 
formally satisfied along the whole path (A. Zwaan 1929). We then again 
consider values of \x — a\ such that the expansion (47.3) is also valid, so that 
the wave function (47.1) has the form 

**> - ïvéiFÔl) U^r< CXP B J ^»Ι*ΌΚ*-«)] d*}. (47.4) 
a 

Let us first examine the variation of this function on passing round the 
point x = a from right to left along a semicircle of radius p in the upper half-

f The expansion (47.3) is valid for |ΛΤ—α| <̂  L, where L is the characteristic distance for 
variation of the field U{x). The quasi-classicality condition (46.7) requires that \x —a\3/2 > 
hl^(m\F0\). These two conditions are compatible, since the quasi-classicality of the motion 
far from the turning-point (i.e. for \x—a\ ~ L) implies that L3/2 > hl\/(m\F0\). 
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plane of the complex variable x. On this semicircle, 

X 

x — a= pe^y I \/(x — a)dx = |p3/2(cos f φ + i sin f φ), 
a 

the phase φ varying from 0 to π. The exponential factor in (47.4) at first 
(for 0 < φ < |7T) increases in modulus, and then decreases to modulus 1. At 
the end of the semicircle the exponent becomes purely imaginary, equal to 

X X 

— \/[2m\Fo\(a-x)] dx = p(x) dx. 
a a 

In the coefficient of the exponential in (47.4), the change along the semicircle 

( * - Ä ) - 1 / 4 - ► ( έ , - * ) - 1 / 4 * - < * / 4 . 

Thus the whole function (47.4) becomes the second term in (47.2) with 
coefficient C2 = £C*-'*/4. 

The fact that by passing through the upper half-plane it is possible to 
determine only the coefficient C% in (47.2) has a simple explanation. If we 
follow the variation of the function (47.2) along the same semicircle in the 
opposite direction (from left to right), we see that at the beginning the first 
term rapidly becomes exponentially small in comparison with the second 
term. But the quasi-classical approximation does not allow us to include 
exponentially small terms in ψ superimposed on the large principal term, and 
this is why the first term in (47.2) is "lost" in the passage along the semicircle. 

To determine the coefficient Ci, we must pass from right to left along a 
semicircle in the lower half-plane of the complex variable x. In a similar 
manner, we find that formula (47.4) then becomes the first term in (47.2) 
with coefficient C\ = £C#*/4. 

Thus the wave function (47.1) for x > a corresponds to the function 

φ = cos ( - \ p dx + \π ) 
VP V* J / 

for# < a. This rule of correspondence may be written in a form independent 
of the side of the turning-point on which the classically inaccessible region 
lies: 

C f 1 
2V\p\tXp\ h 

for U(x) > E 

p dx *7/o sSiH~H (47·5) 
a 

for U(x) < E 
(H. A. Kramers 1926). 
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Let us once again emphasize what is obvious from the proof, namely that 

this rule is associated with a particular boundary condition imposed on one 
side of the turning-point, and in this sense it can be applied only in a particular 
direction. The rule (47.5) is derived with the boundary condition that ψ -> 0 
into the classically inaccessible region, and must be applied to a passage from 
the latter to the classically allowed region, as is shown by the arrow.f 

If the classically accessible region is bounded (at x = a) by an infinitely 
high "potential wall", the boundary condition for the wave function at x = a 
is φ = 0 (see §18). The quasi-classical approximation is then valid up to 
the wall itself, and the wave function is 

X 

C 1 r 
φ = sin- *d« for x < a, 

VP HJ } (47.6) 
a 

φ = 0 for x > a. 

§48. Bohr and Sommerfeldes quantization rule 
States that belong to the discrete energy spectrum are quasi-classical for 

high values of the quantum number w, the ordinal number of the state, 
since this gives the number of nodes of the eigenfunction (see §21), and the 
distance between adjacent nodes is equal in order of magnitude to the de 
Broglie wavelength. For large n this distance is small, and the wavelength is 
therefore small in comparison with the dimensions of the region of the 
motion. 

Let us derive the condition which determines the quantum energy levels 
in the quasi-classical case. To do this we consider a finite one-dimensional 
motion of a particle in a potential well; the classically accessible region 
b ^ x ^ a is bounded by two turning points.J 

According to the rule (47.5), the boundary condition at x = b gives (in the 
region right of this point) the wave function 

φ = IL cos ΓΙ [ρ άχ-\τΛ. (48.1) 

f A passage in the opposite direction is meaningless in that even a small change of the wave 
function on the right in (47.5) may give rise to an exponentially increasing term in the function 
on the left. 

% In classical mechanics, a particle in such a field would execute a periodic motion with 
period (time taken in moving from x — b to x = a and back) 

o a 
T = 2 j dx/v = 2m j .ax p, 

where v is the velocity of the particle. 
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Applying the same rule to the region left of the point x = ay we obtain the 
same function in the form 

Φ = cos - \ p dx-in \. 
VP U J J 

If these two expressions are the same throughout the region, the sum of their 
phases (which is a constant) must be an integral multiple of π : 

with C = ( - l ) " C " . Hence 

p dx — \π = ηπ, 

— pax = n + i (48.2) 
2πΗ 

where j>p dx = 2 J p dx is the integral taken over the whole period of the 

classical motion of the particle. This is the condition which determines 
the stationary states of the particle in the quasi-classical case. It corresponds 
to Bohr and Sommerfeld's quantization rule in the old quantum theory. 

It is easy to see that the integer n is equal to the number of zeros of the 
wave function, and hence it is the ordinal number of the stationary state. 
For the phase of the wave function (48.1) increases from — \π at x = b to 
(n + 1)π at x = a, so that the cosine vanishes n times in this range (outside 
the range b ^ x < a, the wave function decreases monotonically and has 
no zeros at a finite distance).f 

As has been shown previously, the number n is large in the quasi-classical 
case. It must be emphasized, however, that the retention of the term \ added 
to n in (48.2) is nevertheless legitimate: to take account of the subsequent 
correction terms in the phase of the wave functions would give only terms 
~X/L on the right of (48.2), which are small in comparison with unity; see 
the remark at the end of §46.J 

In normalizing these wave functions, the integration of |j/r|2 can be re­
stricted to the range b ^ x < a, since outside this range ψ decreases exponen­
tially. Since the argument of the cosine in (48.1 ) is a rapidly varying function, 
we can with sufficient accuracy replace the squared cosine by its mean value \. 

t Strictly speaking, the zeros should be counted by means of the exact form of the wave 
function near the turning points. If this is done, the result given in the text is confirmed. 

X In some cases the exact expression for the energy levels E(n) (as a function of the quantum 
number n), obtained from the exact Schrödinger's equation, is such that it retains its form as 
n -> oo ; examples are the energy levels in a Coulomb field, and those of a harmonic oscillator. 
In these cases, of course, the quantization rule (48.2), although really applicable only for large 
n, gives for the function E(n) an expression which is the exact one. 
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This gives 

ί da; f dx \φ\* dx x \C*\ 
b X*) 

= 7rC2/2moj = 1, 

where ω = 2π/Γ is the frequency of the classical periodic motion. Thus 
the normalized quasi-classical function is 

X 

*-fea'\j\pi*-*·} (483) 
b 

It must be recalled that the frequency ω is in general different for different 
levels, being a function of energy. 

The relation (48.2) can also be interpreted in another manner. The 
integral j>p dx is the area enclosed by the closed classical phase trajectory 
of the particle (i.e. the curve in the /w-plane, which is the phase space of the 
particle). Dividing this area into cells, each of area 2πΗ> we have n cells 
altogether; n, however, is the number of states with energies not exceeding 
the given value (corresponding to the phase trajectory considered). Thus 
we can say that, in the quasi-classical case, there corresponds to each quantum 
state a cell in phase space of area 2nh. In other words, the number of states 
belonging to the volume element ΔρΔχ of phase space is 

ΔρΔχβπΗ. (48.4) 

If we introduce, instead of the momentum, the wave number k = p\h, this 
number can be written 

Δ*Δ*/2π. 

It is, as we should expect, the same as the familiar expression for the number 
of characteristic vibrations of a wave field (see Fields, §52). 

Starting from the quantization rule (48.2), we can ascertain the general 
nature of the distribution of levels in the energy spectrum. Let ΔΕ be the 
distance between two neighbouring levels, i.e. levels whose quantum numbers 
n differ by unity. Since ΔΕ is small (for large n) compared with the energy 
itself of the levels, we can write, from (48.2), 

ΔΕ j> (dp/dE) dx =2nh. 

ί (dp/dE) dx = <j> dxjv = T. 

ΔΕ = InhjT = hœ. (48.5
) 

But dEjdp = v, so that 

Hence we have 
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Thus the distance between two neighbouring levels is Αω. The frequencies 

ω may be regarded as approximately the same for several adjacent levels (the 
difference in whose numbers n is small compared with n itself). Hence we 
reach the conclusion that, in any small range of a quasi-classical part of the 
spectrum, the levels are equidistant, at intervals of Ηω, This result could 
have been foreseen, since, in the quasi-classical case, the frequencies cor­
responding to transitions between different energy levels must be integral 
multiples of the classical frequency ω. 

It is of interest to investigate what the matrix elements of any physical 
quantity / become in the limit of classical mechanics. To do this, we start 
from the fact that the mean value / in any quantum state must become, in 
the limit, simply the classical value of the quantity, provided that the state 
itself gives, in the limit, a motion of the particle in a definite path. A wave 
packet (see §6) corresponds to such a state ; it is obtained by superposition of 
a number of stationary states with nearly the same energy. The wave func­
tion of such a state is of the form 

Ψ = ΣαηΨ„, 

where the coefficients an are noticeably different from zero only in some 
range Δη of values of the quantum number n such that 1 < An <̂  n\ the 
numbers n are supposed large, because the stationary states are quasi-classical. 
The mean value of/ is, by definition, 

/ = J Ψ*/Ψ d* = ΣΣ am*anfm«e**™\ 

or, replacing the summation over n and m by a summation over n and the 
difference m —n = s, 

where we have put comn = sco in accordance with (48.5). 
The matrix elements fnm calculated by means of the quasi-classical wave 

functions decrease rapidly in magnitude as the difference m—n increases, 
though at the same time they vary only slowly with n itself (m—n being fixed). 
Hence we can write approximately 

/ = ΣΣ aSaJ*«** = Σ |an|* Σ/>-*<, 

where we have introduced the notation f8 =/ή+,,ή> ^ being some mean value 
of the quantum number in the range Δη. But Σ \an\2 = 1 ; hence 

The sum obtained is in the form of an ordinary Fourier series. Since / 
must, in the limit, coincide with the classical quantity/(i), we arrive at the 



174 The Quasi-Classical Case §48 
result that the matrix elements fmn in the limit become the components / m _ n 
in the expansion of the classical function/(i) as a Fourier series. 

Similarly, the matrix elements for transitions between states of the con­
tinuous spectrum become the components in the expansion off(t) as a Fourier 
integral. Here the wave functions of the stationary states must be normalized 
by (1/Ä) times the delta function of energy. 

All the above results can be generalized immediately to systems with 
several degrees of freedom, executing a finite motion for which the problem 
in classical mechanics allows a complete separation of the variables in the 
Hamilton-Jacobi method (called a conditionally periodic motion; see 
Mechanics, §52). After separation of the variables for each degree of freedom, 
the problem reduces to a one-dimensional problem, and the corresponding 
quantization conditions are 

pidqi = 2nk(ni + Yi)t (48.6) 

where the integral is taken over the period of variation of the generalized 
coordinate q^ and yi is a number of the order of unity which depends on 
the nature of the boundary conditions for the degree of freedom considered.f 

In the general case of an arbitrary (not conditionally periodic) motion in 
several dimensions the formulation of the quasi-classical conditions of 
quantization calls for more far-reaching considerations, t The concept of 
"cells" in phase space is, however, applicable (in the quasi-classical approxi­
mation) in the same form always. This is clear from the above-mentioned 
relationship between it and the number of characteristic vibrations of the 
wave field in a given volume of space. In the general case of a system with s 
degrees of freedom, there are 

ΔΝ = Aqi... kqskpi... &psl(2nhy (48.7) 

quantum states in a volume element in phase space. || 

P R O B L E M S 
PROBLEM 1. Determine (approximately) the number of discrete energy levels of a particle 

moving in an arbitrary (not central) field U(r) which satisfies the quasi-classical condition. 

SOLUTION. The number of states belonging to a volume of phase space which corresponds 
to momenta in the range 0 < p ^ />max and particle coordinates in the volume element dV 

t For example, in motion in a centrally symmetric field we have 

pr àr = 2nk(nr+ì), j ρθ άθ = 2nh(l-m + ì), ίρφάφ = 2nhm, 

where nr = n — l — 1 is the radial quantum number. The last of the three equations simply 
expresses the fact that ρψ is the ^-component of the angular momentum, equal to Hm. 

% See J. B. Keller, Annals of Physics 4, 180, 1958. 
|| In particular, for one particle, d3pl(2nH)3 is the number of states for a range d3/> of values 

of the momentum in unit volume of coordinate space. This explains the agreement of the 
two methods of normalizing the plane wave (15.8), mentioned in the footnote to that formula. 
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is j7r/>max3 dVI(2vh)^. For given r the particle can have (in its classical motion) a momentum 
satisfying the condition E = p2/2m + U(r) ^ 0. Substituting />max = V[— 2mU(r)], we 
obtain the total number of states of the discrete spectrum: 

where the integration is over the region of space in which U < 0. This integral diverges 
(i.e. the number of states is infinite) if U decreases at infinity as r~* with s< 2, in accordance 
with the results of §18. 

PROBLEM 2. The same as Problem 1, but for a quasi-classical centrally symmetric field 
U(r) (V. L. Pokrovskii). 

SOLUTION. In a centrally symmetric field the number of states is not the same as the 
number of energy levels, on account of the degeneracy of the latter with respect to the 
direction of the angular momentum. The required number can be found by noting that the 
number of levels with a given value of the angular momentum M is the same as the number 
of (non-degenerate) levels for a one-dimensional motion in a field with potential energy 
Uett = U(r) + M2l2mr2. The maximum possible value of the momentum pr for given rand 
energies E < 0 is /v.max = V(—2mUett)· The number of states (i.e. the required number of 
levels) is therefore 

J 2πΗ 2πΗ J V \ ImrV 

The required total number of discrete levels is obtained from this by integration with respect 
to M\h (which replaces in the quasi-classical case the summation with respect to /) , and is 

(m/W) j (-U)rdr. 

§49. Quasi-classical motion in a centrally symmetric field 
In motion in a centrally symmetric field the wave function of a particle 

falls, as we know, into an angular and a radial part. Let us first consider the 
former. 

The dependence of the angular wave function on the angle φ (determined 
by the quantum number m) is so simple that the question of finding approxi­
mate formulae for it does not arise. The dependence on the polar angle Θ is, 
according to the general rule, quasi-classical if the corresponding quantum 
number / is large (this condition will be more precisely formulated below). 

We shall here confine ourselves to deriving the quasi-classical expression 
for the angular function for the case (the most important one in applications) 
of states whose magnetic quantum number is zero (m = 0).f This function 
is, apart from a constant factor, the Legendre polynomial P , (coso) (see 
(28.8)), and satisfies the differential equation 

daPj /d^ + cos θάΡιΙάθ + 1(1+1)Ρι = 0. (49.1) 

The substitution 

P^cos Θ) = x(0)/Vsin Θ (49.2) 

t The opposite case, m = /, must correspond in the limit to motion in a classical orbit 
lying in the equatorial plane Θ = %π, since Pj*(cos Θ) = constant X sin* 0, and as / -> oo 
this function (and therefore | φ\2) tends to zero for all θ Φ \τχ. 
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reduces this to 

*"+[('+έ)2+έ cosec2% = 0, (49.3) 

which does not contain the first derivative and is similar in appearance to 
the one-dimensional Schrödinger's equation. 

In equation (49.3), the part of the de Broglie wavelength is played by 

λ = 2π [( /+è)2+i cosec20]-i/2. 

The requirement that the derivative ά(λ/2π)Ιάχ is small (the condition (46.6)) 
gives the inequalities 

ΘΙ > 1, (π-0)/ > 1, (49.4) 

which are the conditions that the angular part of the wave function is quasi-
classical. For large / these conditions hold for almost all values of 0, exclud­
ing only a range of angles very close to 0 or π. 

When the conditions (49.4) are satisfied, we can neglect the second term 
in the brackets in (49.3) compared with the first: 

x"+{i+Wx = o. 
The solution of this equation is 

X = VsinflPj(cos0) = A sin[(/+J)0+a], (49.5) 

where A and a are constants. 
For angles θ <ζ 1, we can put in equation (49.1) cos 0 « 1/0; replacing 

also /(/+1) by the approximation (/+£)2, we obtain the equation 

d2P, 1 dP, 
Ί5Γ+ϋΐΠΓ+('+»'ρ'-0· 

which has as solution the Bessel function of zero order: 

Ρ^ο8 0) =J0[(l+iWl M L (49.6) 

The constant factor is put equal to unity, since we must have Pz = 1 for 
0 = 0 . The approximate expression (49.6) for P , is valid for all angles 
0 <̂  1. In particular, it can be applied for angles in the range 1// <̂  0 <ξ 1, 
where it must agree with the expression (49.5), which holds for all 0 > 1//. 
For-0/ > 1 the Bessel function can be replaced by its asymptotic expression 
for large values of the argument, and we obtain 

1 ~ N ττΐ 

2 s in[(/+i)0+^] 
i /0 

(we can neglect £ in the coefficient compared with /). On comparison with 
(49.5), we find that A = \^{2\ΉΙ), α = JTT. Thus we obtain finally the 
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following expression for P^cos 0), applicable in the quasi-classical case:f 

«-•»-vi 2 sin[(J+t)»+H 
\/sin# 

(49.7) 

The normalized spherical harmonic function Yio is obtained from this as 
(cf. (28.8)) 

F , . * ί " 1 ( ' + " , + W . ,49.8) 

Let us now turn to the radial part of the wave function. It has been 
shown in §32 that the function \(r) = rR(r) satisfies an equation identical 
with the one-dimensional Schrödinger's equation, with the potential energy 

Ä2/(/+l) 
Ut(r) = U(r)+-^-vL. 

2m r2 

Hence we can apply the results obtained in the previous sections, if the 
potential energy is understood to be the function Ufa). 

The case / = 0 is the simplest. The centrifugal energy vanishes and, if 
the field U(r) satisfies the necessary condition (46.6), the radial wave 
function will be quasi-classical in all space. For r = 0 we must have χ = 0, 
and hence the quasi-classical function x(r) is determined by formulae (47.6). 

If / Φ 0, the centrifugal energy also must satisfy the condition (46.6). In 
the region of small r, where the centrifugal energy is of the same order as 
the total energy, the wavelength λ = lirhjp ~ r\l, and the condition (46.6) 
gives / > 1. Thus, if / is small, the quasi-classical condition is violated by the 
centrifugal energy in the region of small r. It is easily seen that we obtain 
the correct value of the phase of the quasi-classical wave function χ(τ) by 
calculating it from the formulae for one-dimensional motion, replacing the 
coefficient /(/+1) in the potential energy Ufa) by (l+\)2:% 

h* (Z+£)2 

m=U(r)+—±-!L. (49.9) 
2m r2 

The question of the applicability of the quasi-classical approximation to a 
Coulomb field U = ±a/r requires special consideration. The most import­
ant part of the whole region of the motion is that corresponding to distances 
r for which \U\ ~ \E\y i.e. r ~ a/|2?|. The condition for quasi-classical 
motion in this region amounts to the requirement that the wavelength 
λ ~ hl\/(2m\E\) is small compared with the dimensions a/|2?| of the 

t Note that, as a result of replacing /( /+1) by (/ + £)2, we have obtained an expression 
which is multiplied by ( — l)1 when Θ is replaced by π — Θ; this is as it should be for the function 
Pi(cos Θ). 

X For example, in the simple case of free motion (JJ = 0) the phase of the function calcula­
ted from formula (48.1) with Ui from (49.9) will be the same as the phase of (33.12) for 
large r, as it should be. 
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region ; this gives 

\E\ <ζ moL2lh2, (49.10) 

i.e. the absolute value of the energy must be small compared with the energy 
of the particle in the first Bohr orbit. This condition can also be written in 
the form 

φν > 1, (49.11) 

where v ~ ^(\E\jm) is the velocity of the particle. It should be noticed 
that this condition is the opposite of the condition (45.7) for the applicability 
of perturbation theory to a Coulomb field. 

The region of small distances ( | U(r) | > E) is without interest in a repulsive 
Coulomb field, since for U > E the quasi-classical wave functions diminish 
exponentially. In an attractive field, however, when / is small it is possible 
for the particle to penetrate into the region where \U\ > E, so that we have 
to consider the limits of applicability of the quasi-classical approximation in 
this case. We use the general condition (46.7), putting there 

F = -dU/àr = - α / Λ p « ^(2m\U\) - V0»a/r). 

As a result, we find that the region of applicability of the quasi-classical 
approximation is restricted to distances such that 

r>Äa/wa, (49.12) 

i.e. distances large in comparison with the "radius" of the first Bohr orbit. 

P R O B L E M 
Determine the behaviour of the wave function near the origin, if the field becomes infinite 

as ± oLJr8, with s > 2, when r -> 0. 
SOLUTION. For sufficiently small r, the wavelength λ ~ hly/(m\U\) ~ hr*l2ly/(moL)t 

so that dA/dr ~ hrsl2'll^(moi) <^ 1 ; thus the quasi-classical condition is satisfied. In an 
attractive field Ui -> — oo when r--> 0. The region near the origin is in this case classically 
accessible, and the radial wave function χ ~ \jy/pt whence 

In a repulsive field, the region of small r is classically inaccessible. In this case the wave 
function tends exponentially to zero as r -> 0. Omitting tfie coefficient of the exponential 
function, we have 

Γ 1 Γ Ί i W(2ma-) ) 

r 

§50. Penetration through a potential barrier 
Let us consider the motion of a particle in a field of the type shown in 

Fig. 13, characterized by the presence of a potential barrier, i.e. a region in 
which the potential energy U(x) exceeds the total energy E of the particle. 
In classical mechanics, a potential barrier is "impénétrable'' to a particle; 
in quantum mechanics, however, a particle can pass "through the barrier, ,: 
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FIG. 13 

the probability of this is not zero. The phenomenon is also called the tunnel 
effect.-f If the field U(x) satisfies the quasi-classical conditions, the trans­
mission coefficient for the barrier can be calculated in a general form. We 
may remark that, in particular, these conditions give the result that the barrier 
must be "wide", and hence the transmission coefficient is small in the quasi-
classical case. 

In order not to interrupt the subsequent calculations, we shall first solve 
the following problem. Let the quasi-classical wave function in the region 
to the right of the turning point x = b (where U(x) < E) have the form of a 
travelling wave : 

* = ^ e x p ß J ράχ+\ίπ ] (50.1) 

We require to find the wave function of this state in the region x < b. This 
can be done by the same procedure as in §47, using the plane of the complex 
variable x. Putting 

E-U(x) « Fo(x-b\F0 > 0, 

we can write the function (50.1) as 

ψ(χ) = J ^ w \xi/^exp^V(2mF0) {V b) dx + \ίπ L 
V(2mFo)(x-b)V* r [h 

and pass from right to left along a semicircle in the upper half-plane : 

x — b = 
I 

pei(i>
f i y/(x — b) ax = f p3/2( — sin \φ + i cos f ̂  

the phase φ varying from 0 to π. The function ψ(χ) at first decreases and then 

f An example of this type has already occurred in §25, Problem 2. 
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increases in modulus, its value at the end of the semicircle being 

φ(χ) = C 1 
V(2mF0) (o-x)i /V*/4 

Thus we obtain the correspondence rulef 

&J exp i - \/[2mFo(x — b)] dx + \ίπ\. 

vpexpUl 
for x > b 

p àx + \XTT C {1 
V\P\ exp l* 

x 

\pax\\ (50.2) 

for x < b 

It must be emphasized that this rule presupposes a particular form of the 
wave function (a wave travelling to the right) in the classically allowed region, 
and must be applied to go from the latter to the classically inaccessible region. 

Let us now go on to calculate the coefficient for the penetration of the 
potential barrier. Let the particle be incident on the barrier from left to 
right, coming from region I. Then, in region III beyond the barrier, there 
will be only the wave that has passed through the barrier and is propagated 
to the right; the wave function in this region may be written 

ψ = / — exp Qj^cb + JAr), (50.3) 

where v = p\m is the particle velocity and D the current density in the wave. 
Using the rule (50.2), we can now find the wave function in region II, within 
the barrier: 

^ R e x p G l i H ) 
- > / Ì ^ G I Ì H " A I Ì H ) (50.4) 

f In a passage from right to left through the lower half-plane, the function ψ(χ) at first 
increases and then decreases in modulus, becoming an exponentially small quantity on the 
left-hand axis (φ -> — π), which it would not be legitimate to keep superimposed on the 
exponentially large function (50.2). In the region where ψ(χ) is exponentially large, the 
inexactness of the quasi-classical approximation loses the exponentially small correction 
which for φ -> — 7Γ could become an exponentially large term, and the latter is therefore 
lost also. 
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Finally, applying the rule (47.5), we have in region I in front of the barrier 

b a 

φ = 2 /— exp ( - \p\ dx ) cos (- \ p dx — \π ). 
o x 

If we put here 
b 

ö = e x p ( - | ï\p\dx\ (50.5) 
α 

this becomes 

φ = — cos ( _ p dx + \TT ) 
y/v \ * J / 

a 

x x 

= exp ( - /> d* + \ίττ ) H exp [ \ p dx - \χττ \ 

This first term (which becomes a plane wave φ = e^h^x as # -> — oo) 
represents a wave incident on the barrier, and the second a reflected wave. 
The normalization chosen corresponds to a unit current density in the 
incident wave, and therefore Z), the current density in the transmitted wave, 
is equal to the required transmission coefficient for the barrier. Note that 
this formula is applicable only if the exponent is large, so that D itself is 
small.f 

It has been assumed in the foregoing that the field U(x) satisfies the quasi-
classical condition over the whole extent of the barrier (excluding only the 
immediate neighbourhood of the turning points). In practice, however, we 
often have to deal with barriers where the potential energy curve on one side 
drops so steeply that the quasi-classical approximation is inapplicable. The 
exponential factor in D remains the same in this case as in formula (50.5), 
but the coefficient of the exponential (equal to unity in (50.5)) is different. 
To calculate it we must, essentially, calculate the exact wave function in the 
non-quasi-classical region and determine the quasi-classical wave function 
inside the barrier in accordance with this. 

P R O B L E M S 
PROBLEM 1. Determine the transmission coefficient for the potential barrier shown in 

Fig. 14 (p. 182): U{x) = 0 for x < 0, U(x) = U0—Fx for A; > 0; only the exponential factor 
need be calculated. 

t The exponential smallness of D is related to the fact that the amplitudes of the incident 
and reflected waves in region I are found to be the same; the exponentially small difference 
between them is lost in the quasi-classical approximation. 
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SOLUTION. A simple calculation gives the result 

i V(2"0 \ 

PROBLEM 2. Determine the probability that a particle (with zero angular momentum) will 
emerge from a centrally symmetric potential well with U(r) = —U0 for r < r0, U(r) = a/> 
forr > r 0 (Fig . 15).f 

!</(r) 

FIG. 15 

SOLUTION. The centrally symmetric problem reduces to a one-dimensional one, so that 
the formulae obtained above can be applied. We have 

alE wH-yyKH]4 
Evaluating the integral, we finally obtain 

2a /2m r /Er0 ·Η-?Λ"[«°·-7?-7{τ('-?))]) 
In the limiting case r0 -> 0, this formula becomes 

These formulae are applicable when the exponent is large, i.e. when ct/hv ^> 1. This condi­
tion agrees, as it should, with the condition (49.11) for quasi-classical motion in a Coulomb 
field. 

t This problem was first discussed by G. Gamow (1928) and by R. W. Gurney and 
E. U. Condon (1929) in connection with the theory of radioactive a-decay. 
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PROBLEM 3. The field U(x) consists of two symmetrical potential wells (I and II in Fig. 

16), separated by a barrier. If the barrier were impenetrable to a particle, there would be energy 
levels corresponding to the motion of the particle in one or other well, the same for both 
wells. The fact that a passage through the barrier is possible results in a splitting of each of 
these levels into two neighbouring ones, corresponding to states in which the particle moves 
simultaneously in both wells. Determine the magnitude of the splitting (the field U(x) is 
supposed quasi-classical). 

\ n 

/% 

VOc) 

1 
1 
1 

I / 

y4 

FIG . 16 

SOLUTION. An approximate solution of Schrodinger's equation in the field U(x), neglecting 
the probability of passage through the barrier, can be constructed with the quasi-classical 
wave function φ0(χ) which describes the motion with a certain energy EQ in one well, say I, 
i.e. which is exponentially damped on both sides of this well; the function ψ0(χ) is assumed to 
be normalized so that the integral of φ0

2 over well I is unity. When the small probability of 
tunnelling is taken into account, the level E0 splits into levels E1 and E2. The correct zero-
approximation wave functions corresponding to these levels are the symmetric and anti­
symmetric combinations of φ0(χ) and φ0(—χ): 

ΦΙ(Χ) = —ζ[φο(χ) + φο{-χ)1 

M*) = ~^ίΦο(χ) - Φο( - *)] · 
(1) 

In well I, the function φ0(—χ) is vanishingly small in comparison with φ0(χ); in well II the 
opposite is true. The product φ0(χ)φ0(—χ) is therefore vanishingly small everywhere, and 
the functions (1) are normalized so that the integrals of their squares over wells I and II 
are unity. 

Schrodinger's equations are 

0o"+(2m/Ä2)(£o-C/)0o = 0, 01"+(2m/Ä«)(JE1-l/)01 = 0; 

we multiply the former by ψ1 and the latter by φ0ί subtract corresponding terms, and integrate 
over x from 0 to oo. Bearing in mind that, for x = 0, φχ — χ/2Φο and ψι = 0, and that 

we find 

oo oo 

0 0 

EX-EQ = -(Ä»Ao(O)0o'(O). 

Similarly, we find for Et—E0 the same expression with the sign changed. Thus 

Ef-Et = (2Ä«/m)W0W(0). 
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By means of formula (47.1), with the coefficient C from (48.3), wè find that 

e 

0 

where v0 = V12(U0—E0)lm]. Thus 

Ε%-Εχ = ^ - e x p [ - - j \P\ dx~j. 
-a 

where a is the turning point corresponding to the energy E0; see Fig. 16. 

PROBLEM 4. Determine the exact value of the transmission coefficient D for the passage 
of a particle through a parabolic potential barrier U(x) = — ikx* (supposing that D is not 
small) (E. C. Kemble 1935).f 

SOLUTION. Whatever the values of k and Ef the motion is quasi-classical at sufficiently 
large distances \x\, with 

p = <s/[2m{E+\ht*)] % x^{mk)+Ey/(mlk)lXi 

and the asymptotic form of the solutions of Schrödinger's equation is 

φ = constant χ e±*i*/«f ±<*-i/«f 

where we have introduced the notation 

ξ = x(mklh*YI\ € = (EJhWWk). 

We are interested in the solution which, as x -► + 00, contains only a wave which has 
passed the barrier, i.e. is propagated from left to right. We put 

asx->coy ψ = ΒβΚ'/ψ*-^ (1) 
a s * -> - 0 0 , ψ = * - i < ' / 2 ( _ £ ) - i c - l / 2 + ^ i i 1 / 2 ( _ | ) < 6 - l / 2 . (2) 

In the expression (2), the first term represents the incident wave, and the second the reflected 
wave (the direction of propagation of a wave is that in which its phase increases). The 
relation between A and B can be found by using the fact that in this case the asymptotic 
expression for ψ is valid in the whole of a sufficiently distant region of the plane of the complex 
variable ξ. Let us follow the variation of the function (1) as we go round a semicircle of large 
radius p in the upper half-planei of ξ : 

{ = pét*,iP = p2(-sin2<£ + icos2<£), 

with φ varying from 0 to π. As a result of traversing this semicircle, the function (1) becomes 
the second term in (2), with coefficient 

A= £(*«»)<«-i/a = -iB-"<; (3) 

in the part of the path (in < φ < π) where the modulus |« ί ί , / 2 | is exponentially large, the 
exponentially small quantity which should give the first term in (2) is lost.J 

t The solution of this problem can also be applied to penetration sufficiently near the top 
of any barrier U(x) whose dependence on x near the maximum is quadratic. 

% The passage through the lower half-plane to determine A would be unsuitable, since 
on the part of the path ( — π < φ < —£π) that adjoins its left-hand end (where φ is given 
by (2)), the term in£**l/2 is exponentially small in comparison with e"1**/2. 
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With the normalization of the incident wave chosen in (2), the condition of conservation of 

number of particles is 

μψ + |Β|*=1. (4) 
From (3) and (4) we find the required transmission coefficient: 

D = |£|2 = 1/(1+*-2«). 

This formula holds for any E. If the energy is large and negative, it gives D ^ ί~ 2 π | £ | 

in accordance with formula (50.5). For E > 0, the quantity 

R = \-D = 1/(1+*2«) 

is the coefficient of reflection above the barrier. 

§51. Calculation of the quasi-classical matrix elements 
A direct calculation of the matrix elements of any physical quanti ty/with 

respect to the quasi-classical wave functions presents great difficulty. We may 
suppose that the energies of the states between which the matrix element is 
calculated are not close to each other, so that the element does not reduce to 
the Fourier component of the quantity / ( §48). The difficulties arise because, 
owing to the fact that the wave functions are exponential (with a large imagin­
ary exponent), the integrand oscillates rapidly. 

We shall consider a one-dimensional case (motion in a field U(x)), and sup­
pose for simplicity that the operator of the physical quantity is merely a func­
t ion / (x) of the coordinate. Let φι and φ% be the wave functions correspond­
ing to some values Ex and E2 of the energy of the particle (with E2 > Ely 
Fig. 17) ; we shall suppose that φ1 and φ2 are taken real. We have to calculate 
the integral -, 

oo 

/i,2 = J>i/<M*. (51.1) 

\U(x) 

a2 σ, 

F IG. 17 

I I 

According to (47.5), the wave function φι in the regions on both sides of 
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the turning-point x = a\y but not in its immediate neighbourhood, is of the 
form 

for x < αγ, φι = e, 
W\P. 

X 

7\txp[JhSpldx} 
(51.2) 

f o r * > al9 φχ = — i - c o s i - ργάχ-\π\ 

and similarly for φ2 (replacing the suffix 1 by 2). 
However, the calculation of the integral (51.1) by substituting in it these 

asymptotic expressions for the wave functions would not give the correct 
result. The reason is, as we shall see below, that this integral is an exponen­
tially small quantity, whereas the integrand is not itself small. Hence even a 
relatively small change in the integrand will in general change the order of 
magnitude of the integral. This difficulty can be circumvented as follows. 

We represent the function φ2 as a sum φ2 = ^2++02~> expressing the cosine 
(in the region x > a%) as the sum of two exponentials. According to (50.2), we 
have 

for x < a2y φ2+ = 

for x > a2i φ2+ = 

exp U/H]· ) 
α2 

x 

C2 

2VÌP* 

C2 

/ (51.3) 

the function ψ2~ 1S t n e complex conjugate of ψ%+ : ψ2~ = (^2+)*. 
The integral (51.1) is also divided into the sum of two complex conjugate 

integrals/12 = / i2 + + / i2~ , which we shall proceed to calculate. First of all, 
we note that the integral 

/ l 2 + = j Φι/Φ2+ dx 

converges. For, although the function φ%+ increases exponentially in 
the region x < a2i the function φν in the region x < av tends exponentially 
to zero still more rapidly (since we have {p^ > \p2\ everywhere in the region 
x < a2). 

We shall regard the coordinate x as a complex variable, and displace the 
path of integration off the real axis into the upper half-plane. When x 
receives a positive imaginary increment, an increasing term appears in the 
function φ± (in the region x > ÄJ), but the function φ2

+ decreases still more 



§51 Calculation of the quasi-classical matrix elements 187 
rapidly, since we have p2 > pi everywhere in the region x > av Hence the 
integrand decreases. 

The displaced path of integration does not pass through the points x = av 
a2 on the real axis, near which the quasi-classical approximation is inapplic­
able. Hence we can use for φχ and φ2

+, over the whole path, the functions 
which are their asymptotic expressions in the upper half-plane. These are 

φχ = - exp[~- fv^miU-E^dxX 

(51.4) 

φ2
+ = e x P r — f ^{2m(U-E2)}àx\ 

where the roots are taken so as to be positive on the real axis for x < a\> a<i. 
In the integral 

/l2+ = V ( è ) S eXPß J*V{2«(tf-£i)} à*-\ jV{2m{U-E2)} d*] x 

f(x) dx w (51.5) 
[(U-EMU-EJIV* 

we desire to displace the path of integration in such a way that the exponential 
factor is diminished as much as possible. The exponent has an extreme value 
only where U(x) = oo (for Ex Φ E2i its derivative with respect to x vanishes 
at no other point). Hence the displacement of the contour of integration into 
the upper half-plane is restricted only by the necessity of passing round the 
singular points of the function U(x) ; according to the general theory of linear 
differential equations, these coincide with the singular points of the wave 
function φ(χ). The actual choice of the contour depends on the actual form 
of the field U(x). Thus, if the function U(x) has only one singular point 
x = x0 in the upper half-plane, the integration can be effected along the type 
of path shown in Fig. 18. The immediate neighbourhood of the singular 
point plays the important part in the integral, so that the matrix element 
/i2 = 2 re/ i2+ required is practically proportional to an exponentially small 
expression of the form 

XQ XQ 

/i2 ~ exp i - - imi" ί Λ/[2ηζ(Ε2- £/)] d*- ί y/[2m(Ei- £/)] dx l j (51.6) 

(L. D. Landau 1932).f 
t In deriving formulae (51.5) and (51.6), we have replaced the wave functions by their 

asymptotic expressions, since, in the integral taken along the contour shown in Fig. 18 (p. 188), 
the order of magnitude of the integral is determined by that of the integrand ; hence a relatively 
small change in the latter does not have any great effect on the value of the integral. 
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(Ò 

F I G . 18 

The lower limits of the integrals may be any points in the classically 
accessible regions ; their particular values evidently do not affect the imaginary 
parts of the integrals. If the function U(x) has several singular points in the 
upper half-plane, xo in (51.6) must be taken as that for which the exponent is 
smallest in absolute value.*}· 

The quasi-classical matrix elements for motion in a centrally symmetric 
field must be calculated by the same method. However, we must now replace 
U(r) by the effective potential energy (the sum of the potential energy and 
the centrifugal energy), which will be different for states with different /. 
In view of further applications of the method in question, we shall write the 
effective potential energies in the two states in a general form, as Ui(r) and 
U2(r). Then the exponent in the exponential factor in the integrand in (51.5) 
has an extreme value not only at the points where U\{r) or U%(r) becomes 
infinite, but also at those where 

UM-UM = Et-Ev (51.7) 

Hence, in the formula 

r0 r0 

/ i 2 ~ e x p i ^ - i m T i ^/[2m(E2-U2)]dr- J V [ 2 m ( £ i - t/i)] d r ! | (51.8) 

the possible values of r0 include not only the singular points of U^r) and 
U2(r), but also the roots of equation (51.7). 

The centrally symmetric case differs also in that the integration over r in 
(51.1) is taken from 0 (and not from — oo) to oo: 

GO 

/l2 = J XlfX2 dr-

Here two cases must be distinguished. If the integrand is an even function 
of r, the integration can be formally extended to the whole range from — oo 

f We assume that the quantity/(#) itself has no singular points. 
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to oo, so that there is no difference from the previous case. This may occur 
if U^r) and U2(r) are even functions of r [£/(—r) = U(r)]. Then the wave 
functions xx(r) and x2(r) are either even or odd functionsf (see §21), and, 
if the function/(r) is also even or odd, the product χ1/χ2 may be even. 

If, on the other hand, the integrand is not even (as always happens if U(r) 
is not even), the start of the path of integration cannot be moved away from 
the point r = 0, and this point must be included among the possible values of 
r0 in (51.8). 

P R O B L E M S 
PROBLEM 1. Calculate the quasi-classical matrix elements (exponential factor only) in a 

field U = U0e-ax. 
SOLUTION. U(X) becomes infinite only for * - > — oo. Accordingly, we put #0 = — oo 

in (51.6). We can extend the integration to -f- oo. 
Each of the integrals diverges at the lower limit. Hence we first calculate them from — x 

to oo, and then pass to the limit x -»■ oo. We find 
/ ^ e-i-nmla.KiVi-vx) 

where vi = \/(2Eilm), vi = v/(2£,2/w) are the velocities of the particle at infinity (x -*- oo), 
where the motion is free. 

PROBLEM 2. The same as Problem 1, but in a Coulomb field U — oc/r, for transitions be­
tween states with / = 0. 

SOLUTION. The only singular point of the function U(r) is r = 0. The corresponding 
integral has been calculated in §50, Problem 2. As a result we have by formula (51.8) 

§52. The transition probability in the quasi-classical case 
Penetration through a potential barrier is an example of a process which 

is entirely impossible in classical mechanics. In the quasi-classical case the 
probability of such processes is exponentially small. The relevant exponent 
can be determined as follows. 

Considering a transition of any system from one state to another, we 
solve the corresponding classical equations of motion and find the "path" of 
the transition; this, however, is complex, in accordance with the fact that the 
process cannot occur in classical mechanics. In particular, it is found that, 
in general, the "transition point" qo at which the formal transition of the 
system from one state to the other occurs is complex; the position of this 
point is determined by the classical conservation laws. We next calculate 
the action Si(ji, <7o) + S ^ o , qz) for the motion of the system in the first 
state from some initial position qi to the "transition point" #o> and then in the 
second state from qo to the final position q^. The required probability of the 
process is then given by the formula 

w ~ exp im [Si (qi,q0) + S2 (qofä)] · (52.1) 

t For even U(r), the radial wave function R(r) is even (or odd) when / is even (or odd), as 
is seen from its behaviour for small r (where R ~ rl). 
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If the position of the "transition point" is not unique, it must be chosen 

so that the exponent in (52.1) has the smallest absolute value (which must yet, 
of course, be sufficiently large for formula (52.1) to be valid).f 

Formula (52.1) is in accordance with the rule derived in §51 for calculating 
the quasi-classical matrix elements. It should be emphasized, however, that 
it would not be correct to use the square of the matrix element in calculating 
the coefficient before the exponential in the probability of such transitions. 

The method of complex classical paths based on (52.1) is a general one, 
applicable to transitions in systems with any number of degrees of freedom 
(L. D. Landau 1932). If the transition point is real, but lies in the classically 
inaccessible region, then (in the simple case of one-dimensional motion) 
formula (52.1) is the same as (50.5) for the probability of penetration through 
the potential barrier. 

REFLECTION ABOVE THE BARRIER 

Let us apply (52.1) to the one-dimensional problem of reflection above the 
barrier, i.e. reflection of a particle whose energy exceeds the height of the 
barrier. In this case, #0 is to be taken as the complex coordinate xo of the 
"turning point" at which the particle reverses its direction of motion, i.e. 
the complex root of the equation U(x) = E. We shall show how the reflection 
coefficient may then be calculated more precisely, including the coefficient 
of the exponential. 

We must again (as in §50) establish the relation between the wave functions 
far to the right of the barrier (the transmitted wave) and far to the left (the 
incident and reflected waves). This is easily done by a method similar to 
that used in §§47 and 50, regarding ψ as a function of the complex variable x. 

We write the transmitted wave in the form 

X 

Χχ 

where x\ is any point on the real axis, and follow its variation on passing along 
a path C in the upper half-plane which encloses (at a sufficient distance) the 
turning point xo (Fig. 19); the whole of the latter part of this path must 
lie so far to the left that the error in the approximate (quasi-classical) wave 
function of the incident wave is less than the required small quantity φ-, 
Passage round the point xo causes a change in the sign of the root \/[E— U(x)]> 
and after the return to the real axis the function ψ+ therefore becomes 
i/f-, a wave propagated to the left (i.e. the reflected wave).J Since the ampli­
tudes of the incident and transmitted waves may be regarded as equal, the 

t If the potential energy of the system has itself singular points, these also must be con­
sidered as possible values of q0. 

X A passage along a path below the point *0 (simply going along the real axis, for example) 
converts the function ψ+ into the incident wave. 
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FIG. 19 

required reflection coefficient R is simply the ratio of the squared moduli 
of φ- and ψ+ : 

\Φ- = exp ( - - im Γ ρ άχ J. (52.2) 

Having derived this formula, we can deform the path of integration in the 
exponent in any manner; if we convert it into the path C shown in Fig. 19, 
the integral reduces to twice the integral from x± to XQ> giving 

0 

R = exp ( -4σ(#ι , xo)lh)> σ(*ι, x0) = im J p(x) dx; (52.3) 

since p(x) is real everywhere on the real axis, the choice of x\ is immaterial. 
Note that the coefficient of the exponential in (52.3) is unity (V. L. Pokrovskii, 
S. K. Savvinykh and F. R. Ulinich 1958).f 

As already mentioned, among the possible values of xo we must select the 
one for which the exponent in (52.3) is smallest in absolute magnitude (and 
this value must be large compared with unity).J It is also implied that, if 
the potential energy U(x) itself has singularities in the upper half-plane, 
the integral σ(#ι, xo) has larger values for such points ; otherwise the exponent 
would be determined by one of these points, but the coefficient of the 
exponential would not be unity as in (52.3). This condition is certainly not 
satisfied with increasing energy E if U(x) becomes infinite anywhere in the 
upper half-plane : ultimately the point XQ at which U = E becomes so close 
to the point x& where U = cc that the two points give comparable contribu­
tions to the reflection coefficient (the integral σ(χ00, xo) ~ 1), and formula 
(52.3) becomes invalid. In the limit where E is so large that this integral is 
small compared with unity, perturbation theory becomes applicable (see 
Problem 2). || 

t The proof given here is due to L. D. Landau (1961). 
X Of course, only points x0 are considered for which σ > 0, i.e. points lying in the upper 

half-plane. 
|| An intermediate case is discussed by V. L. Pokrovskii and I. M. Khalatnikov, Soviet 

Physics JETP 13, 1207, 1961. 
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P R O B L E M S 

PROBLEM 1. Using the quasi-classical approximation, with exponential accuracy, determine 
the probability of disintegration of a deuteron in collision with a heavy nucleus regarded as 
the fixed centre of a Coulomb field (E. M. Lifshitz 1939). 

SOLUTION. The principal contribution to the reaction probability comes from collisions 
with zero orbital angular momentum. In the quasi-classical approximation these are the 
head-on collisions, in which the movement of the particles becomes one-dimensional. 

Let E be the deuteron energy in units of e, the binding energy of the proton and the neutron 
in the deuteron; En and Ev the energies of the released neutron and proton in the same units. 
We shall also use the dimensionless coordinate q = erjZe2 (where Ze is the charge on the 
nucleus), and denote by q0 its value (which is in general complex) at the "transition point", 
i.e. at the "moment of disintegration" of the deuteron. We can write 

En = \vn\ Ep = Ì V + - , E = üd2 + i ; (l) 
?o qo 

here vn, vv and va are the velocities of the particles at the moment of disintegration, in units of 
\Z(elm)y where m is the nucléon mass; vn is real and is the same as the velocity of the released 
neutron, but vp and va are complex. The conditions for the conservation of energy and 
momentum at the transition point give 

Ep + En = £" -1 , vp + vn = 2vd, (2) 

whence 

vp = 2i + vn, vd = i + vn, - = E+\-vn
2 + 2ivn. 

The action of the system before the transition corresponds to the motion of the deuteron 
in the field of the nucleus up to the point of disintegration; its imaginary part is 

i m 5 1 = ^ i m p [ 4 ( £ - Ì ) ] d ? 

= Ze2 ™im<2q0vd — cosh-1 ^(q0E)[. (3) 

After the transition, the action corresponds to the motion of the neutron and the proton 
away from the point of disintegration : 

00 00 

im S2 = Ze2 / ü i m j f vn aq + f / hUp - -YÌ dq\ 

= Ze1 — im ) -vnq0-vpq0 + /— cosh"1 ^(q0Ep)L (4) 

According to (52.1), the probability of the process is 

w „ exp j - ^f-h™ [ / J - cosh -i V(qoEp) - - | cosh -i V(?o£) ] l (5) 

In accordance with the fact that the two inverse hyperbolic cosines here come from (4) and 
(3), the signs of their imaginary parts must be the same as those of im vp and im va respectively, 
and the signs of the latter in the solution of equations (2) are chosen so as to make 
1111(5! + S , ) > 0. 

Because w depends exponentially on En> the total probability of disintegration (with any 
values of En and Ev = E—Ì —En) is given by the minimum absolute value of the exponent 
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as a function of En. Analysis shows that this occurs when En -> 0. Then q0 = l/(£"+1), and 
from (5) we find 

) 2Ze* /mf / 2 . IE-I 2 . I E Ί) w ~ exp { — / — / cos- 1 / cos- 1 / \\. 
X h yJ^lyJE-ì V^+i VE yJE+iJ\ 

The condition for this formula to be valid is that the exponent should be large compared 
with unity. 

Having calculated the imaginary part of the action S = Sl + S2 for non-zero values of 
En> we can find the energy distribution of the particles released. Near En = 0, we havef 

im S(En) - im S(0) « En[i^~]En = 0. 
L "^n J 

A calculation of the derivative gives 

aw 
dË~n 

,exp{-^£-2 fej 3 ~ £
 + ! cos- IL·!!]. 

PROBLEM 2. Determine the coefficient of reflection above the barrier for particle energies 
such that perturbation theory is applicable. 

SOLUTION. Formula (43.1) is used, the initial and final wave functions being plane waves 
propagated in opposite directions and normalized respectively by unit current density and the 
delta function of momentum divided by 2nHt with dv = dp'jlnh and />' the momentum after 
reflection. Carrying out the integration with respect to />' (taking account of the delta function), 
we obtain 

00 
R = JÜ-I Γ υ(χ)β*Ρ*/* d*k (1) 

r -oo 

This formula is valid if the conditions for perturbation theory to be applicable are satisfied : 
Ua/hv <^1, where a is the width of the barrier (see the third footnote to §45), and also 
pajh <, 1. The latter condition ensures that the function R(p) is not exponential; otherwise 
the question of the validity of formula (1) would require further investigation. 

PROBLEM 3. Determine the coefficient of reflection above the barrier for a quasi-classical 
barrier when the function U(x) has a discontinuity of slope at x = *0. 

SOLUTION. If the function U(x) has a singularity for» real x, the reflection coefficient is 
determined mainly by the field near that point, and perturbation theory can be formally 
applied to calculate it, without having to be valid for all x ; the fulfilment of the quasi-classical 
condition is sufficient. We then have formula (1) of Problem 2, the only difference being that 
the momentum of the incident particle must be replaced by the value of p(x) at the singular 
point. 

In this case we take the point of discontinuous slope as x = 0, and thus have near this point 

U = -Fix for * > 0 , U = -F2x for x < 0, 

with different Fi and F2. The integration with respect to x is effected by including in the 
integrand a damping factor e±Xx and then letting λ -► 0. The result is 

m2Ä2 

where />o = P(0). 

f When En = 0, the function im S(En) has a cusp from which it increases for both positive 
and negative En (the negative values corresponding to the capture of the neutron by the 
nucleus). 
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§53. Transitions under the action of adiabatic perturbations 

It has already been mentioned in §41 that, in the limit of a perturbation 
which varies arbitrarily slowly with time, the probability of a transition of 
a system from one state to another tends to zero. Let us now consider this 
problem quantitatively, by calculating the transition probability under the 
action of a slowly varying (adiabatic) perturbation (L. D. Landau 1961). 

Let the Hamiltonian of the system be a slowly varying function of time, 
tending to definite limits as t -> ± oo, and let ψη(<1> i) and En(t) be the eigen-
functions and the eigenvalues of the energy (depending on time as a para­
meter) obtained by solving Schrödinger's equation Η(ΐ)φη = Εηφη\ on 
account of the adiabatic variation of tì with time, the time variation of En 
and φη with time will also be slow. The problem is to determine the proba­
bility W2i of finding the system in a certain state 02 as t -> + oo, if it was in 
the state φι as t -> — oo. 

The slow variation of the perturbation means that the duration of the 
*'transition process' ' is very long, and therefore the change in the action during 
this time (given by the integral — J E(t) dt) is large. In this sense the problem 
is quasi-classical, and the required probability is mainly determined by the 
values to of t for which 

Ei(t0) = E2(t0) (53.1) 

and which correspond, as it were, to the ''instant of transition'' in classical 
mechanics (cf. §52); in reality, of course, such a transition is classically 
impossible, as is shown by the fact that the roots of equation (53.1) are 
complex. It is therefore necessary to examine the properties of the solutions 
of Schrödinger's equation for complex values of the parameter t in the 
neighbourhood of the point t = to at which the two eigenvalues of the energy 
become equal. 

As we shall see, the eigenfunctions 0ι, 02 vary rapidly with t near this 
point. To determine this dependence, we first define linear combinations 
01, 02 of 0i, 02 which satisfy the conditions 

j 0i2 dq = j 022 dq = 0, j 0i02 dq = 1. (53.2) 

This can always be achieved by suitable choice of the complex coefficients 
(which are functions of t). The functions 0i, 02 have no singularity at t = to. 

We now seek the eigenfunctions as linear combinations 

0 = 0101 + «202. (53.3) 

Here it must be borne in mind that, when the "time" t is complex, the operator 
H(t) (of the form (17.4)) is still equal to its transpose {tì = tì), but is no 
longer Hermitian {tì Φ tì*)> since the potential energy U{t) Φ U*{t). 

We substitute (53.3) in Schrödinger's equation, multiply on the left by 
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φι or Φ2, and integrate with respect to q. With the notation 

Hik{t) = J ^ d ? , (53.4) 

and using the fact that H12 = H21 owing to the above-mentioned property 
of the Hamiltonian, we obtain the equations 

Hnai + Hua2 = Ea2i 

H12a1 + H22a2 = Εαχ. 

The condition for these equations to have non-zero solutions is (H12 — E)2 = 
H11H22, and the roots of this give the energy eigenvalues 

Ε = Η12±Λ/(ΗηΗ22). (53.6) 
Then (53.5) gives 

a2\ax= ±V(HnlH22). (53.7) 

It is seen from (53.6) that, for a coincidence at the point t = to of the two 
eigenvalues, either Hn or H22 must vanish at that point; let Hn vanish there. 
At a regular point, a function in general vanishes as t — to, and therefore 

E(t)-E(t0)= ± constant xV('-*o)> (53·8) 

i.e. E(t) has a branch point at t = to. We also have #2 ~ V(t~to)) and so 
there is at the point t = to only one eigenfunction, φ±. 

We now see that the problem is formally completely analogous to the 
problem of reflection above the barrier discussed in §52. We have a wave 
function Ψ(ί) which is *'quasi-classical with respect to time", instead of the 
function quasi-classical with respect to the coordinate in §52, and wish to 
find the term of the form c2^2^~iE^ln in the wave function for t -+ + 00, 
if the wave function Ψ(ί) = φ\β~ίΕ

γ
ίΙη as t -> — 00. This is analogous to the 

problem of determining the reflected wave for x -> — 00 from the transmitted 
wave for x -> + 00. The required transition probability W21 = j^212- The 
action S = — J E(t) dt is given by the time integral of a function having 
complex branch points (just as the function p(x) in the integral J p dx had 
complex branch points). The problem under consideration is therefore 
dealt with by means of a contour in the plane of the complex variable t 
from large negative to large positive values, just as in §52 for the plane of the 
variable x, and we shall not repeat the derivation here. 

We shall suppose that E2 > E\ on the real axis. Then the contour must lie 
in the upper half-plane of the complex variable t (where the ratio 
e-iE£in\e-iEtih increases). The resulting formula (analogous to (52.2)) is 

^21 = expf - im E(t) dt\ (53.9) 
e 

where the integration is along the contour shown in Fig. 19 (from left to 
right). 

(53.5) 
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On the left-hand branch of this contour E = E\, and on the right-hand 

branch E = Ε^. We can therefore write (53.9) in the form 

to 

«021 = cxp(-2imjœ2i(t)dt\ (53.10) 

where co2i = (i?2 —£"i)//*, and t\ is any point on the real axis of t\ to must be 
taken as that root of equation (53.1) lying in the upper half-plane for which 
the exponent in (53.10) is smallest in absolute value.f In addition, besides 
the direct transition from state 1 to state 2, there may be possible paths 
through various intermediate states; the probabilities of these are given by 
analogous formulae. For example, for a transition 1 -> 3 -> 2 the integral 
in (53.10) is replaced by a sum of integrals: 

<o ( 3 l ) * o ( 2 3) 

J û!8l(0<i*+ J"û>28(0d*. 

where the upper limits are the ''points of intersection'' of the terms £Ί(ί), 
Es(t) and Es(t), 2?2(*) respectively. This result is obtained by means of a 
contour which encloses both these complex points. J 

f The possible values of t0 must include any points at which E(t) becomes infinite; for 
such points the coefficient of the exponential in (53.9) will not be unity. 

X The intermediate states of a continuous spectrum require a special discussion. 




